Imath (Python)¶
-
Imath.
clamp
((float)arg1, (float)arg2, (float)arg3) → float¶ Other signatures:
clamp( (float)arg1, (float)arg2, (float)arg3) -> float
-
Imath.
cmpt
((float)arg1, (float)arg2, (float)arg3) → int¶
-
Imath.
abs
((float)arg1) → float¶
-
class
Imath.
Box2s
¶ -
-
Box2s.
center
((Box2s)arg1) → V2s¶
-
Box2s.
extendBy
((Box2s)arg1, (V2s)arg2) → None¶ Other signatures:
extendBy( (Box2s)arg1, (Box2s)arg2) -> None
-
Box2s.
hasVolume
((Box2s)arg1) → bool¶
-
Box2s.
intersects
((Box2s)arg1, (V2s)arg2) → bool¶ Other signatures:
intersects( (Box2s)arg1, (Box2s)arg2) -> bool
-
Box2s.
isEmpty
((Box2s)arg1) → bool¶
-
Box2s.
majorAxis
((Box2s)arg1) → int¶
-
Box2s.
makeEmpty
((Box2s)arg1) → None¶
-
Box2s.
max
¶
-
Box2s.
min
¶
-
Box2s.
size
((Box2s)arg1) → V2s¶
-
-
class
Imath.
Frustumf
¶ -
DepthToZ
((Frustumf)arg1, (float)arg2, (int)arg3, (int)arg4) → int¶
-
ZToDepth
((Frustumf)arg1, (int)arg2, (int)arg3, (int)arg4) → float¶
-
aspect
((Frustumf)arg1) → float¶
-
bottom
((Frustumf)arg1) → float¶
-
farPlane
((Frustumf)arg1) → float¶
-
fovx
((Frustumf)arg1) → float¶
-
fovy
((Frustumf)arg1) → float¶
-
left
((Frustumf)arg1) → float¶
-
modifyNearAndFar
((Frustumf)arg1, (float)arg2, (float)arg3) → None¶
-
nearPlane
((Frustumf)arg1) → float¶
-
normalizedZToDepth
((Frustumf)arg1, (float)arg2) → float¶
-
orthographic
((Frustumf)arg1) → bool¶
-
projectPointToScreen
((Frustumf)arg1, (V3f)arg2) → V2f¶
-
projectScreenToRay
((Frustumf)arg1, (V2f)arg2) → object¶
-
projectionMatrix
((Frustumf)arg1) → M44f¶
-
right
((Frustumf)arg1) → float¶
-
screenRadius
((Frustumf)arg1, (V3f)arg2, (float)arg3) → float¶
-
set
((Frustumf)arg1, (float)arg2, (float)arg3, (float)arg4, (float)arg5, (float)arg6, (float)arg7[, (bool)arg8]) → None¶
-
setOrthographic
((Frustumf)arg1, (bool)arg2) → None¶
-
top
((Frustumf)arg1) → float¶
-
window
((Frustumf)arg1, (float)arg2, (float)arg3, (float)arg4, (float)arg5) → Frustumf¶
-
worldRadius
((Frustumf)arg1, (V3f)arg2, (float)arg3) → float¶
-
-
class
Imath.
Frustumd
¶ -
DepthToZ
((Frustumd)arg1, (float)arg2, (int)arg3, (int)arg4) → int¶
-
ZToDepth
((Frustumd)arg1, (int)arg2, (int)arg3, (int)arg4) → float¶
-
aspect
((Frustumd)arg1) → float¶
-
bottom
((Frustumd)arg1) → float¶
-
farPlane
((Frustumd)arg1) → float¶
-
fovx
((Frustumd)arg1) → float¶
-
fovy
((Frustumd)arg1) → float¶
-
left
((Frustumd)arg1) → float¶
-
modifyNearAndFar
((Frustumd)arg1, (float)arg2, (float)arg3) → None¶
-
nearPlane
((Frustumd)arg1) → float¶
-
normalizedZToDepth
((Frustumd)arg1, (float)arg2) → float¶
-
orthographic
((Frustumd)arg1) → bool¶
-
projectPointToScreen
((Frustumd)arg1, (V3d)arg2) → V2d¶
-
projectScreenToRay
((Frustumd)arg1, (V2d)arg2) → object¶
-
projectionMatrix
((Frustumd)arg1) → M44d¶
-
right
((Frustumd)arg1) → float¶
-
screenRadius
((Frustumd)arg1, (V3d)arg2, (float)arg3) → float¶
-
set
((Frustumd)arg1, (float)arg2, (float)arg3, (float)arg4, (float)arg5, (float)arg6, (float)arg7[, (bool)arg8]) → None¶
-
setOrthographic
((Frustumd)arg1, (bool)arg2) → None¶
-
top
((Frustumd)arg1) → float¶
-
window
((Frustumd)arg1, (float)arg2, (float)arg3, (float)arg4, (float)arg5) → Frustumd¶
-
worldRadius
((Frustumd)arg1, (V3d)arg2, (float)arg3) → float¶
-
-
class
Imath.
M33d
¶ -
-
static
M33d.
baseTypeEpsilon
() → float¶
-
static
M33d.
baseTypeMax
() → float¶
-
static
M33d.
baseTypeMin
() → float¶
-
static
M33d.
baseTypeSmallest
() → float¶
-
M33d.
equalWithAbsError
((M33d)arg1, (M33d)arg2, (float)arg3) → bool¶
-
M33d.
equalWithRelError
((M33d)arg1, (M33d)arg2, (float)arg3) → bool¶
-
M33d.
extractAndRemoveScalingAndShear
((M33d)arg1, (V2d)arg2, (float)arg3) → bool¶
-
M33d.
extractEuler
((M33d)arg1, (float)arg2) → None¶ Assumes that the matrix does not include shear or non-uniform scaling, but does not examine the matrix to verify this assumption. Matrices with shear or non-uniform scaling are likely to produce meaningless results. Therefore, you should use the removeScalingAndShear() routine, if necessary, prior to calling extractEuler.
-
M33d.
extractSHRT
((M33d)arg1, (V2d)arg2, (float)arg3, (float)arg4, (V2d)arg5) → bool¶ Returns a tuple containing scale, shear, rotate, translate.
Other signatures:
extractSHRT( (M33d)self) -> tuple
-
M33d.
extractScaling
((M33d)arg1, (V2d)arg2) → bool¶
-
M33d.
extractScalingAndShear
((M33d)arg1, (V2d)arg2, (float)arg3) → bool¶
-
M33d.
gjInverse
((M33d)arg1) → M33d¶ Other signatures:
gjInverse( (M33d)arg1, (bool)arg2) -> M33d
-
M33d.
gjInvert
((M33d)arg1) → M33d¶ Other signatures:
gjInvert( (M33d)arg1, (bool)arg2) -> M33d
-
M33d.
identity
= M33d(1, 0, 0, 0, 1, 0, 0, 0, 1)¶
-
M33d.
inverse
((M33d)arg1) → M33d¶ Other signatures:
inverse( (M33d)arg1, (bool)arg2) -> M33d
-
M33d.
invert
((M33d)arg1) → M33d¶ Other signatures:
invert( (M33d)arg1, (bool)arg2) -> M33d
-
M33d.
makeIdentity
((M33d)arg1) → None¶
-
M33d.
multDirMatrix
((M33d)arg1, (V2d)arg2, (V2d)arg3) → None¶ Vector-times-matrix multiplication; see also the * operators
-
M33d.
multVecMatrix
((M33d)arg1, (V2d)arg2, (V2d)arg3) → None¶ Vector-times-matrix multiplication; see also the * operators
-
M33d.
negate
((M33d)arg1) → M33d¶
-
M33d.
removeScaling
((M33d)arg1) → bool¶
-
M33d.
removeScalingAndShear
((M33d)arg1) → bool¶
-
M33d.
rotate
((M33d)arg1, (float)arg2) → M33d¶ Rotate the given matrix by r
-
M33d.
sansScaling
((M33d)arg1) → M33d¶
-
M33d.
sansScalingAndShear
((M33d)arg1) → M33d¶
-
M33d.
scale
((M33d)arg1, (V2d)arg2) → M33d¶ Set matrix to scale by given vector
-
M33d.
setRotation
((M33d)arg1, (float)arg2) → M33d¶ Set matrix to rotation by r (in radians)
-
M33d.
setScale
((M33d)arg1, (float)arg2) → M33d¶ Set matrix to scale by given uniform factor Set matrix to scale by given uniform factor
Other signatures:
setScale( (M33d)arg1, (V2d)arg2) -> M33d
-
M33d.
setShear
((M33d)arg1, (float)arg2) → M33d¶ Set matrix to shear x for each y coord. by given factor xy Set matrix to shear x for each y coord. by given factor h[0] and to shear y for each x coord. by given factor h[1]
Other signatures:
setShear( (M33d)arg1, (V2d)arg2) -> M33d
-
M33d.
setTranslation
((M33d)arg1, (V2d)arg2) → M33d¶ Set matrix to translation by given vector
-
M33d.
shear
((M33d)arg1, (float)arg2) → M33d¶ Shear the matrix in x for each y coord. by given factor xy Shear the matrix in x for each y coord. by given factor xy and shear y for each x coord. by given factor yx
Other signatures:
shear( (M33d)arg1, (V2d)arg2) -> M33d
-
M33d.
toMatrix44
((M33d)arg1) → M44d¶
-
M33d.
translate
((M33d)arg1, (V2d)arg2) → M33d¶ Translate the matrix by t
-
M33d.
translation
((M33d)arg1) → V2d¶ Return translation component
-
M33d.
transpose
((M33d)arg1) → M33d¶
-
M33d.
transposed
((M33d)arg1) → M33d¶
-
static
-
class
Imath.
M33f
¶ -
-
static
M33f.
baseTypeEpsilon
() → float¶
-
static
M33f.
baseTypeMax
() → float¶
-
static
M33f.
baseTypeMin
() → float¶
-
static
M33f.
baseTypeSmallest
() → float¶
-
M33f.
equalWithAbsError
((M33f)arg1, (M33f)arg2, (float)arg3) → bool¶
-
M33f.
equalWithRelError
((M33f)arg1, (M33f)arg2, (float)arg3) → bool¶
-
M33f.
extractAndRemoveScalingAndShear
((M33f)arg1, (V2f)arg2, (float)arg3) → bool¶
-
M33f.
extractEuler
((M33f)arg1, (float)arg2) → None¶ Assumes that the matrix does not include shear or non-uniform scaling, but does not examine the matrix to verify this assumption. Matrices with shear or non-uniform scaling are likely to produce meaningless results. Therefore, you should use the removeScalingAndShear() routine, if necessary, prior to calling extractEuler.
-
M33f.
extractSHRT
((M33f)arg1, (V2f)arg2, (float)arg3, (float)arg4, (V2f)arg5) → bool¶ Returns a tuple containing scale, shear, rotate, translate.
Other signatures:
extractSHRT( (M33f)self) -> tuple
-
M33f.
extractScaling
((M33f)arg1, (V2f)arg2) → bool¶
-
M33f.
extractScalingAndShear
((M33f)arg1, (V2f)arg2, (float)arg3) → bool¶
-
M33f.
gjInverse
((M33f)arg1) → M33f¶ Other signatures:
gjInverse( (M33f)arg1, (bool)arg2) -> M33f
-
M33f.
gjInvert
((M33f)arg1) → M33f¶ Other signatures:
gjInvert( (M33f)arg1, (bool)arg2) -> M33f
-
M33f.
identity
= M33f(1, 0, 0, 0, 1, 0, 0, 0, 1)¶
-
M33f.
inverse
((M33f)arg1) → M33f¶ Other signatures:
inverse( (M33f)arg1, (bool)arg2) -> M33f
-
M33f.
invert
((M33f)arg1) → M33f¶ Other signatures:
invert( (M33f)arg1, (bool)arg2) -> M33f
-
M33f.
makeIdentity
((M33f)arg1) → None¶
-
M33f.
multDirMatrix
((M33f)arg1, (V2f)arg2, (V2f)arg3) → None¶ Vector-times-matrix multiplication; see also the * operators
-
M33f.
multVecMatrix
((M33f)arg1, (V2f)arg2, (V2f)arg3) → None¶ Vector-times-matrix multiplication; see also the * operators
-
M33f.
negate
((M33f)arg1) → M33f¶
-
M33f.
removeScaling
((M33f)arg1) → bool¶
-
M33f.
removeScalingAndShear
((M33f)arg1) → bool¶
-
M33f.
rotate
((M33f)arg1, (float)arg2) → M33f¶ Rotate the given matrix by r
-
M33f.
sansScaling
((M33f)arg1) → M33f¶
-
M33f.
sansScalingAndShear
((M33f)arg1) → M33f¶
-
M33f.
scale
((M33f)arg1, (V2f)arg2) → M33f¶ Set matrix to scale by given vector
-
M33f.
setRotation
((M33f)arg1, (float)arg2) → M33f¶ Set matrix to rotation by r (in radians)
-
M33f.
setScale
((M33f)arg1, (float)arg2) → M33f¶ Set matrix to scale by given uniform factor Set matrix to scale by given uniform factor
Other signatures:
setScale( (M33f)arg1, (V2f)arg2) -> M33f
-
M33f.
setShear
((M33f)arg1, (float)arg2) → M33f¶ Set matrix to shear x for each y coord. by given factor xy Set matrix to shear x for each y coord. by given factor h[0] and to shear y for each x coord. by given factor h[1]
Other signatures:
setShear( (M33f)arg1, (V2f)arg2) -> M33f
-
M33f.
setTranslation
((M33f)arg1, (V2f)arg2) → M33f¶ Set matrix to translation by given vector
-
M33f.
shear
((M33f)arg1, (float)arg2) → M33f¶ Shear the matrix in x for each y coord. by given factor xy Shear the matrix in x for each y coord. by given factor xy and shear y for each x coord. by given factor yx
Other signatures:
shear( (M33f)arg1, (V2f)arg2) -> M33f
-
M33f.
toMatrix44
((M33f)arg1) → M44f¶
-
M33f.
translate
((M33f)arg1, (V2f)arg2) → M33f¶ Translate the matrix by t
-
M33f.
translation
((M33f)arg1) → V2f¶ Return translation component
-
M33f.
transpose
((M33f)arg1) → M33f¶
-
M33f.
transposed
((M33f)arg1) → M33f¶
-
static
-
class
Imath.
Box2d
¶ -
-
Box2d.
center
((Box2d)arg1) → V2d¶
-
Box2d.
extendBy
((Box2d)arg1, (V2d)arg2) → None¶ Other signatures:
extendBy( (Box2d)arg1, (Box2d)arg2) -> None
-
Box2d.
hasVolume
((Box2d)arg1) → bool¶
-
Box2d.
intersects
((Box2d)arg1, (V2d)arg2) → bool¶ Other signatures:
intersects( (Box2d)arg1, (Box2d)arg2) -> bool
-
Box2d.
isEmpty
((Box2d)arg1) → bool¶
-
Box2d.
majorAxis
((Box2d)arg1) → int¶
-
Box2d.
makeEmpty
((Box2d)arg1) → None¶
-
Box2d.
max
¶
-
Box2d.
min
¶
-
Box2d.
size
((Box2d)arg1) → V2d¶
-
-
Imath.
iszero
((float)arg1, (float)arg2) → bool¶
-
class
Imath.
Box2f
¶ -
-
Box2f.
center
((Box2f)arg1) → V2f¶
-
Box2f.
extendBy
((Box2f)arg1, (V2f)arg2) → None¶ Other signatures:
extendBy( (Box2f)arg1, (Box2f)arg2) -> None
-
Box2f.
hasVolume
((Box2f)arg1) → bool¶
-
Box2f.
intersects
((Box2f)arg1, (V2f)arg2) → bool¶ Other signatures:
intersects( (Box2f)arg1, (Box2f)arg2) -> bool
-
Box2f.
isEmpty
((Box2f)arg1) → bool¶
-
Box2f.
majorAxis
((Box2f)arg1) → int¶
-
Box2f.
makeEmpty
((Box2f)arg1) → None¶
-
Box2f.
max
¶
-
Box2f.
min
¶
-
Box2f.
size
((Box2f)arg1) → V2f¶
-
-
Imath.
finited
((float)arg1) → bool¶ Return true if the number is not a NaN or Infinity.
-
Imath.
finitef
((float)arg1) → bool¶ Return true if the number is not a NaN or Infinity.
-
class
Imath.
C4c
¶ -
-
C4c.
a
¶
-
C4c.
b
¶
-
static
C4c.
baseTypeEpsilon
() → int¶
-
static
C4c.
baseTypeMax
() → int¶
-
static
C4c.
baseTypeMin
() → int¶
-
static
C4c.
baseTypeSmallest
() → int¶
-
static
C4c.
dimensions
() → int¶
-
C4c.
g
¶
-
static
C4c.
hsv2rgb
((C4c)arg1) → C4c¶
-
C4c.
negate
((C4c)arg1) → C4c¶
-
static
C4c.
packed2rgb
((int)arg1, (C4c)arg2) → None¶
-
C4c.
r
¶
-
static
C4c.
rgb2hsv
((C4c)arg1) → C4c¶
-
static
C4c.
rgb2packed
((C4c)arg1) → int¶
-
-
class
Imath.
C4h
¶ -
-
C4h.
a
¶
-
C4h.
b
¶
-
static
C4h.
baseTypeEpsilon
() → half¶
-
static
C4h.
baseTypeMax
() → half¶
-
static
C4h.
baseTypeMin
() → half¶
-
static
C4h.
baseTypeSmallest
() → half¶
-
static
C4h.
dimensions
() → int¶
-
C4h.
g
¶
-
static
C4h.
hsv2rgb
((C4h)arg1) → C4h¶
-
C4h.
negate
((C4h)arg1) → C4h¶
-
static
C4h.
packed2rgb
((int)arg1, (C4h)arg2) → None¶
-
C4h.
r
¶
-
static
C4h.
rgb2hsv
((C4h)arg1) → C4h¶
-
static
C4h.
rgb2packed
((C4h)arg1) → int¶
-
-
class
Imath.
Box2i
¶ -
-
Box2i.
center
((Box2i)arg1) → V2i¶
-
Box2i.
extendBy
((Box2i)arg1, (V2i)arg2) → None¶ Other signatures:
extendBy( (Box2i)arg1, (Box2i)arg2) -> None
-
Box2i.
hasVolume
((Box2i)arg1) → bool¶
-
Box2i.
intersects
((Box2i)arg1, (V2i)arg2) → bool¶ Other signatures:
intersects( (Box2i)arg1, (Box2i)arg2) -> bool
-
Box2i.
isEmpty
((Box2i)arg1) → bool¶
-
Box2i.
majorAxis
((Box2i)arg1) → int¶
-
Box2i.
makeEmpty
((Box2i)arg1) → None¶
-
Box2i.
max
¶
-
Box2i.
min
¶
-
Box2i.
size
((Box2i)arg1) → V2i¶
-
-
class
Imath.
C3h
¶ -
-
C3h.
b
¶
-
C3h.
g
¶
-
static
C3h.
hsv2rgb
((V3h)arg1) → V3h¶
-
C3h.
negate
((C3h)arg1) → C3h¶
-
static
C3h.
packed2rgb
((int)arg1, (V3h)arg2) → None¶
-
C3h.
r
¶
-
static
C3h.
rgb2hsv
((V3h)arg1) → V3h¶
-
static
C3h.
rgb2packed
((V3h)arg1) → int¶
-
-
class
Imath.
V3s
¶ -
-
static
V3s.
baseTypeEpsilon
() → int¶
-
static
V3s.
baseTypeMax
() → int¶
-
static
V3s.
baseTypeMin
() → int¶
-
static
V3s.
baseTypeSmallest
() → int¶
-
V3s.
closestVertex
((V3s)v0, (V3s)v1, (V3s)v2, (V3s)p) → V3s¶ Find the vertex of triangle (v0, v1, v2), which is closest to point p
-
V3s.
cross
((V3s)arg1, (V3s)arg2) → V3s¶
-
static
V3s.
dimensions
() → int¶
-
V3s.
dot
((V3s)arg1, (V3s)arg2) → int¶
-
V3s.
equalWithAbsError
((V3s)arg1, (V3s)arg2, (int)arg3) → bool¶
-
V3s.
equalWithRelError
((V3s)arg1, (V3s)arg2, (int)arg3) → bool¶
-
V3s.
length
((V3s)arg1) → int¶
-
V3s.
length2
((V3s)arg1) → int¶
-
V3s.
negate
((V3s)arg1) → V3s¶
-
V3s.
normalize
((V3s)arg1) → V3s¶
-
V3s.
normalizeExc
((V3s)arg1) → V3s¶
-
V3s.
normalizeNonNull
((V3s)arg1) → V3s¶
-
V3s.
normalized
((V3s)arg1) → V3s¶
-
V3s.
normalizedExc
((V3s)arg1) → V3s¶
-
V3s.
normalizedNonNull
((V3s)arg1) → V3s¶
-
V3s.
orthogonal
((V3s)self, (V3s)t) → V3s¶ Find a vector which is perpendicular to self and in the same plane as self and t
-
static
V3s.
project
((V3s)s, (V3s)t) → V3s¶ Find the projection of vector t onto vector s
-
V3s.
projection
((V3s)arg1, (V3s)arg2) → V3s¶ Find the projection of self onto vector
-
V3s.
reflect
((V3s)self, (V3s)t) → V3s¶ Find the direction of self after reflection off a plane with normal t
-
V3s.
x
¶
-
V3s.
y
¶
-
V3s.
z
¶
-
static
-
class
Imath.
Quatf
¶ -
-
Quatf.
angle
¶
-
Quatf.
axis
¶
-
Quatf.
exp
((Quatf)arg1) → Quatf¶
-
Quatf.
identity
= Quatf(1, 0, 0, 0)¶
-
Quatf.
intermediate
((Quatf)q0, (Quatf)q1, (Quatf)q2) → Quatf¶ From advanced Animation and Rendering Techniques by Watt and Watt, Page 366: computing the inner quadrangle points (qa and qb) to guarantee tangent continuity.
-
Quatf.
inverse
((Quatf)arg1) → Quatf¶
-
Quatf.
invert
((Quatf)arg1) → Quatf¶ self -> 1 / self
-
Quatf.
length
((Quatf)arg1) → float¶
-
Quatf.
log
((Quatf)arg1) → Quatf¶
-
Quatf.
normalize
((Quatf)arg1) → Quatf¶
-
Quatf.
normalized
((Quatf)arg1) → Quatf¶
-
Quatf.
r
¶
-
Quatf.
setAxisAngle
((Quatf)self, (V3f)axis, (float)radians) → Quatf¶
-
Quatf.
setRotation
((Quatf)arg1, (V3f)fromDirection, (V3f)toDirection) → Quatf¶
-
Quatf.
slerp
((Quatf)self, (Quatf)q2, (float)t) → Quatf¶ Spherical linear interpolation. NOTE: Assumes q1 and q2 are normalized and that 0 <= t <= 1. This method does not interpolate along the shortest arc between q1 and q2. If you desire interpolation along the shortest arc, then consider flipping the second quaternion explicitly before calling slerp. The implementation of squad() depends on a slerp() that interpolates as is, without the automatic flipping.
-
Quatf.
spline
((Quatf)q0, (Quatf)q1, (Quatf)q2, (Quatf)q3, (float)t) → Quatf¶ Spherical Cubic Spline Interpolation - from Advanced Animation and Rendering Techniques by Watt and Watt, Page 366: A spherical curve is constructed using three spherical linear interpolations of a quadrangle of unit quaternions: q1, qa, qb, q2. Given a set of quaternion keys: q0, q1, q2, q3, this routine does the interpolation between q1 and q2 by constructing two intermediate quaternions: qa and qb. The qa and qb are computed by the intermediate function to guarantee the continuity of tangents across adjacent cubic segments. The qa represents in-tangent for q1 and the qb represents the out-tangent for q2. The q1 q2 is the cubic segment being interpolated. The q0 is from the previous adjacent segment and q3 is from the next adjacent segment. The q0 and q3 are used in computing qa and qb.
-
Quatf.
squad
((Quatf)q1, (Quatf)qa, (Quatf)qb, (Quatf)q2, (float)t) → Quatf¶ Spherical Quadrangle Interpolation - from Advanced Animation and Rendering Techniques by Watt and Watt, Page 366: It constructs a spherical cubic interpolation as a series of three spherical linear interpolations of a quadrangle of unit quaternions.
-
Quatf.
toMatrix33
((Quatf)arg1) → M33f¶
-
Quatf.
toMatrix44
((Quatf)arg1) → M44f¶
-
Quatf.
v
¶
-
-
class
Imath.
Quatd
¶ -
-
Quatd.
angle
¶
-
Quatd.
axis
¶
-
Quatd.
exp
((Quatd)arg1) → Quatd¶
-
Quatd.
identity
= Quatd(1, 0, 0, 0)¶
-
Quatd.
intermediate
((Quatd)q0, (Quatd)q1, (Quatd)q2) → Quatd¶ From advanced Animation and Rendering Techniques by Watt and Watt, Page 366: computing the inner quadrangle points (qa and qb) to guarantee tangent continuity.
-
Quatd.
inverse
((Quatd)arg1) → Quatd¶
-
Quatd.
invert
((Quatd)arg1) → Quatd¶ self -> 1 / self
-
Quatd.
length
((Quatd)arg1) → float¶
-
Quatd.
log
((Quatd)arg1) → Quatd¶
-
Quatd.
normalize
((Quatd)arg1) → Quatd¶
-
Quatd.
normalized
((Quatd)arg1) → Quatd¶
-
Quatd.
r
¶
-
Quatd.
setAxisAngle
((Quatd)self, (V3d)axis, (float)radians) → Quatd¶
-
Quatd.
setRotation
((Quatd)arg1, (V3d)fromDirection, (V3d)toDirection) → Quatd¶
-
Quatd.
slerp
((Quatd)self, (Quatd)q2, (float)t) → Quatd¶ Spherical linear interpolation. NOTE: Assumes q1 and q2 are normalized and that 0 <= t <= 1. This method does not interpolate along the shortest arc between q1 and q2. If you desire interpolation along the shortest arc, then consider flipping the second quaternion explicitly before calling slerp. The implementation of squad() depends on a slerp() that interpolates as is, without the automatic flipping.
-
Quatd.
spline
((Quatd)q0, (Quatd)q1, (Quatd)q2, (Quatd)q3, (float)t) → Quatd¶ Spherical Cubic Spline Interpolation - from Advanced Animation and Rendering Techniques by Watt and Watt, Page 366: A spherical curve is constructed using three spherical linear interpolations of a quadrangle of unit quaternions: q1, qa, qb, q2. Given a set of quaternion keys: q0, q1, q2, q3, this routine does the interpolation between q1 and q2 by constructing two intermediate quaternions: qa and qb. The qa and qb are computed by the intermediate function to guarantee the continuity of tangents across adjacent cubic segments. The qa represents in-tangent for q1 and the qb represents the out-tangent for q2. The q1 q2 is the cubic segment being interpolated. The q0 is from the previous adjacent segment and q3 is from the next adjacent segment. The q0 and q3 are used in computing qa and qb.
-
Quatd.
squad
((Quatd)q1, (Quatd)qa, (Quatd)qb, (Quatd)q2, (float)t) → Quatd¶ Spherical Quadrangle Interpolation - from Advanced Animation and Rendering Techniques by Watt and Watt, Page 366: It constructs a spherical cubic interpolation as a series of three spherical linear interpolations of a quadrangle of unit quaternions.
-
Quatd.
toMatrix33
((Quatd)arg1) → M33d¶
-
Quatd.
toMatrix44
((Quatd)arg1) → M44d¶
-
Quatd.
v
¶
-
-
Imath.
floor
((float)arg1) → int¶
-
Imath.
lerp
((float)arg1, (float)arg2, (float)arg3) → float¶ Other signatures:
lerp( (V3f)arg1, (V3f)arg2, (float)arg3) -> V3f lerp( (V2f)arg1, (V2f)arg2, (float)arg3) -> V2f lerp( (V3d)arg1, (V3d)arg2, (float)arg3) -> V3d lerp( (V2d)arg1, (V2d)arg2, (float)arg3) -> V2d lerp( (V3i)arg1, (V3i)arg2, (int)arg3) -> V3i lerp( (V2i)arg1, (V2i)arg2, (int)arg3) -> V2i lerp( (V3s)arg1, (V3s)arg2, (int)arg3) -> V3s lerp( (V2s)arg1, (V2s)arg2, (int)arg3) -> V2s lerp( (C4f)arg1, (C4f)arg2, (float)arg3) -> C4f lerp( (C3f)arg1, (C3f)arg2, (float)arg3) -> C3f lerp( (C4h)arg1, (C4h)arg2, (half)arg3) -> C4h lerp( (C3h)arg1, (C3h)arg2, (half)arg3) -> C3h lerp( (C4c)arg1, (C4c)arg2, (str)arg3) -> C4c lerp( (C3c)arg1, (C3c)arg2, (str)arg3) -> C3c
-
Imath.
equal
((float)a, (float)b, (float)error) → bool¶ Equality function with an error value
-
class
Imath.
V3d
¶ -
-
static
V3d.
baseTypeEpsilon
() → float¶
-
static
V3d.
baseTypeMax
() → float¶
-
static
V3d.
baseTypeMin
() → float¶
-
static
V3d.
baseTypeSmallest
() → float¶
-
V3d.
closestVertex
((V3d)v0, (V3d)v1, (V3d)v2, (V3d)p) → V3d¶ Find the vertex of triangle (v0, v1, v2), which is closest to point p
-
V3d.
cross
((V3d)arg1, (V3d)arg2) → V3d¶
-
static
V3d.
dimensions
() → int¶
-
V3d.
dot
((V3d)arg1, (V3d)arg2) → float¶
-
V3d.
equalWithAbsError
((V3d)arg1, (V3d)arg2, (float)arg3) → bool¶
-
V3d.
equalWithRelError
((V3d)arg1, (V3d)arg2, (float)arg3) → bool¶
-
V3d.
length
((V3d)arg1) → float¶
-
V3d.
length2
((V3d)arg1) → float¶
-
V3d.
negate
((V3d)arg1) → V3d¶
-
V3d.
normalize
((V3d)arg1) → V3d¶
-
V3d.
normalizeExc
((V3d)arg1) → V3d¶
-
V3d.
normalizeNonNull
((V3d)arg1) → V3d¶
-
V3d.
normalized
((V3d)arg1) → V3d¶
-
V3d.
normalizedExc
((V3d)arg1) → V3d¶
-
V3d.
normalizedNonNull
((V3d)arg1) → V3d¶
-
V3d.
orthogonal
((V3d)self, (V3d)t) → V3d¶ Find a vector which is perpendicular to self and in the same plane as self and t
-
static
V3d.
project
((V3d)s, (V3d)t) → V3d¶ Find the projection of vector t onto vector s
-
V3d.
projection
((V3d)arg1, (V3d)arg2) → V3d¶ Find the projection of self onto vector
-
V3d.
reflect
((V3d)self, (V3d)t) → V3d¶ Find the direction of self after reflection off a plane with normal t
-
V3d.
x
¶
-
V3d.
y
¶
-
V3d.
z
¶
-
static
-
class
Imath.
V3f
¶ -
-
static
V3f.
baseTypeEpsilon
() → float¶
-
static
V3f.
baseTypeMax
() → float¶
-
static
V3f.
baseTypeMin
() → float¶
-
static
V3f.
baseTypeSmallest
() → float¶
-
V3f.
closestVertex
((V3f)v0, (V3f)v1, (V3f)v2, (V3f)p) → V3f¶ Find the vertex of triangle (v0, v1, v2), which is closest to point p
-
V3f.
cross
((V3f)arg1, (V3f)arg2) → V3f¶
-
static
V3f.
dimensions
() → int¶
-
V3f.
dot
((V3f)arg1, (V3f)arg2) → float¶
-
V3f.
equalWithAbsError
((V3f)arg1, (V3f)arg2, (float)arg3) → bool¶
-
V3f.
equalWithRelError
((V3f)arg1, (V3f)arg2, (float)arg3) → bool¶
-
V3f.
length
((V3f)arg1) → float¶
-
V3f.
length2
((V3f)arg1) → float¶
-
V3f.
negate
((V3f)arg1) → V3f¶
-
V3f.
normalize
((V3f)arg1) → V3f¶
-
V3f.
normalizeExc
((V3f)arg1) → V3f¶
-
V3f.
normalizeNonNull
((V3f)arg1) → V3f¶
-
V3f.
normalized
((V3f)arg1) → V3f¶
-
V3f.
normalizedExc
((V3f)arg1) → V3f¶
-
V3f.
normalizedNonNull
((V3f)arg1) → V3f¶
-
V3f.
orthogonal
((V3f)self, (V3f)t) → V3f¶ Find a vector which is perpendicular to self and in the same plane as self and t
-
static
V3f.
project
((V3f)s, (V3f)t) → V3f¶ Find the projection of vector t onto vector s
-
V3f.
projection
((V3f)arg1, (V3f)arg2) → V3f¶ Find the projection of self onto vector
-
V3f.
reflect
((V3f)self, (V3f)t) → V3f¶ Find the direction of self after reflection off a plane with normal t
-
V3f.
x
¶
-
V3f.
y
¶
-
V3f.
z
¶
-
static
-
class
Imath.
V3i
¶ -
-
static
V3i.
baseTypeEpsilon
() → int¶
-
static
V3i.
baseTypeMax
() → int¶
-
static
V3i.
baseTypeMin
() → int¶
-
static
V3i.
baseTypeSmallest
() → int¶
-
V3i.
closestVertex
((V3i)v0, (V3i)v1, (V3i)v2, (V3i)p) → V3i¶ Find the vertex of triangle (v0, v1, v2), which is closest to point p
-
V3i.
cross
((V3i)arg1, (V3i)arg2) → V3i¶
-
static
V3i.
dimensions
() → int¶
-
V3i.
dot
((V3i)arg1, (V3i)arg2) → int¶
-
V3i.
equalWithAbsError
((V3i)arg1, (V3i)arg2, (int)arg3) → bool¶
-
V3i.
equalWithRelError
((V3i)arg1, (V3i)arg2, (int)arg3) → bool¶
-
V3i.
length
((V3i)arg1) → int¶
-
V3i.
length2
((V3i)arg1) → int¶
-
V3i.
negate
((V3i)arg1) → V3i¶
-
V3i.
normalize
((V3i)arg1) → V3i¶
-
V3i.
normalizeExc
((V3i)arg1) → V3i¶
-
V3i.
normalizeNonNull
((V3i)arg1) → V3i¶
-
V3i.
normalized
((V3i)arg1) → V3i¶
-
V3i.
normalizedExc
((V3i)arg1) → V3i¶
-
V3i.
normalizedNonNull
((V3i)arg1) → V3i¶
-
V3i.
orthogonal
((V3i)self, (V3i)t) → V3i¶ Find a vector which is perpendicular to self and in the same plane as self and t
-
static
V3i.
project
((V3i)s, (V3i)t) → V3i¶ Find the projection of vector t onto vector s
-
V3i.
projection
((V3i)arg1, (V3i)arg2) → V3i¶ Find the projection of self onto vector
-
V3i.
reflect
((V3i)self, (V3i)t) → V3i¶ Find the direction of self after reflection off a plane with normal t
-
V3i.
x
¶
-
V3i.
y
¶
-
V3i.
z
¶
-
static
-
Imath.
divp
((int)arg1, (int)arg2) → int¶ Integer division where the remainder of x/y is always positive:
Other signatures:
divp(x,y) == floor (double(x) / double(y
-
Imath.
lerpfactor
((float)arg1, (float)arg2, (float)arg3) → float¶
-
Imath.
modp
((int)arg1, (int)arg2) → int¶ Integer remainder where the remainder of x/y is always positive:
Other signatures:
modp(x,y) == x - y * divp(x,
-
class
Imath.
Box3i
¶ -
-
Box3i.
center
((Box3i)arg1) → V3i¶
-
Box3i.
extendBy
((Box3i)arg1, (V3i)arg2) → None¶ Other signatures:
extendBy( (Box3i)arg1, (Box3i)arg2) -> None
-
Box3i.
hasVolume
((Box3i)arg1) → bool¶
-
Box3i.
intersects
((Box3i)arg1, (V3i)arg2) → bool¶ Other signatures:
intersects( (Box3i)arg1, (Box3i)arg2) -> bool
-
Box3i.
isEmpty
((Box3i)arg1) → bool¶
-
Box3i.
majorAxis
((Box3i)arg1) → int¶
-
Box3i.
makeEmpty
((Box3i)arg1) → None¶
-
Box3i.
max
¶
-
Box3i.
min
¶
-
Box3i.
size
((Box3i)arg1) → V3i¶
-
-
Imath.
predf
((float)arg1) → float¶ Returns float(f-e), where e is the smallest positive number such that float(f-e) != f. Exceptions: If the input value is an infinity or a nan, succf(), predf(), succd(), and predd() all return the input value without changing it.
-
class
Imath.
M44f
¶ -
-
static
M44f.
alignZAxisWithTargetDir
((V3f)arg1, (V3f)arg2) → M44f¶ Returns a matrix that rotates the z-axis so that it points towards “targetDir”. You must also specify that you want the up vector to be pointing in a certain direction “upDir”. Notes: The following degenerate cases are handled: (a) when the directions given by “toDir” and “upDir” are parallel or opposite; (the direction vectors must have a non-zero cross product) (b) when any of the given direction vectors have zero length
-
static
M44f.
baseTypeEpsilon
() → float¶
-
static
M44f.
baseTypeMax
() → float¶
-
static
M44f.
baseTypeMin
() → float¶
-
static
M44f.
baseTypeSmallest
() → float¶
-
M44f.
equalWithAbsError
((M44f)arg1, (M44f)arg2, (float)arg3) → bool¶
-
M44f.
equalWithRelError
((M44f)arg1, (M44f)arg2, (float)arg3) → bool¶
-
M44f.
extractAndRemoveScalingAndShear
((M44f)arg1, (V3f)arg2, (V3f)arg3) → bool¶
-
M44f.
extractEulerXYZ
((M44f)arg1, (V3f)arg2) → None¶ This function assumes that the matrix does not include shear or non-uniform scaling, but it does not examine the matrix to verify this assumption. Matrices with shear or non-uniform scaling are likely to produce meaningless results. Therefore, you should use the removeScalingAndShear() routine, if necessary, prior to calling extractEulerXYZ()
-
M44f.
extractEulerZYX
((M44f)arg1, (V3f)arg2) → None¶ As extractEulerXYZ but with reversed rotation order.
-
M44f.
extractQuat
((M44f)arg1) → Quatf¶
-
M44f.
extractSHRT
((M44f)self, (V3f)scale, (V3f)shear, (V3f)rotate, (V3f)translate, (Order)order) → bool¶ Returns a tuple containing scale, shear, rotate, translate. Returns a tuple containing scale, shear, rotate, translate.
Other signatures:
extractSHRT( (M44f)self, (V3f)scale, (V3f)shear, (Eulerf)rotate, (V3f)translate) -> bool extractSHRT( (M44f)self) -> tuple extractSHRT( (M44f)self, (Order)order) -> tuple extractSHRT( (M44f)arg1, (V3f)scale, (V3f)shear, (V3f)rotate, (V3f)translate) -> bool extractSHRT( (M44f)arg1, (V3f)scale, (V3f)shear, (Eulerf)rotate, (V3f)translate) -> bool
-
M44f.
extractScaling
((M44f)arg1, (V3f)arg2) → bool¶
-
M44f.
extractScalingAndShear
((M44f)arg1, (V3f)arg2, (V3f)arg3) → bool¶
-
M44f.
gjInverse
((M44f)arg1) → M44f¶ Other signatures:
gjInverse( (M44f)arg1, (bool)arg2) -> M44f
-
M44f.
gjInvert
((M44f)arg1) → M44f¶ Other signatures:
gjInvert( (M44f)arg1, (bool)arg2) -> M44f
-
M44f.
identity
= M44f(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1)¶
-
M44f.
inverse
((M44f)arg1) → M44f¶ Other signatures:
inverse( (M44f)arg1, (bool)arg2) -> M44f
-
M44f.
invert
((M44f)arg1) → M44f¶ Other signatures:
invert( (M44f)arg1, (bool)arg2) -> M44f
-
M44f.
makeIdentity
((M44f)arg1) → None¶
-
M44f.
multDirMatrix
((M44f)arg1, (V3f)arg2, (V3f)arg3) → None¶ Vector-times-matrix multiplication; see also the * operators
-
M44f.
multVecMatrix
((M44f)arg1, (V3f)arg2, (V3f)arg3) → None¶ Vector-times-matrix multiplication; see also the * operators
-
M44f.
multiply
((M44f)arg1, (M44f)arg2, (M44f)arg3) → None¶
-
M44f.
negate
((M44f)arg1) → M44f¶
-
M44f.
removeScaling
((M44f)arg1) → bool¶
-
M44f.
removeScalingAndShear
((M44f)arg1) → bool¶
-
M44f.
rotate
((M44f)arg1, (V3f)arg2) → M44f¶ Rotate the matrix by XYZ euler angles in r
-
static
M44f.
rotationMatrix
((V3f)arg1, (V3f)arg2) → M44f¶ Returns a matrix that rotates “fromDirection” vector to “toDirection” vector.
-
static
M44f.
rotationMatrixWithUpDir
((V3f)arg1, (V3f)arg2, (V3f)arg3) → M44f¶ Returns a matrix that rotates the “fromDir” vector so that it points towards “toDir”. You may also specify that you want the up vector to be pointing in a certain direction “upDir”.
-
M44f.
sansScaling
((M44f)arg1) → M44f¶
-
M44f.
sansScalingAndShear
((M44f)arg1) → M44f¶
-
M44f.
scale
((M44f)arg1, (V3f)arg2) → M44f¶ Set matrix to scale by given vector
-
M44f.
setAxisAngle
((M44f)arg1, (V3f)arg2, (float)arg3) → M44f¶ Set matrix to rotation around given axis by given angle
-
M44f.
setEulerAngles
((M44f)arg1, (V3f)arg2) → M44f¶ Set matrix to rotation by XYZ euler angles (in radians)
-
M44f.
setScale
((M44f)arg1, (float)arg2) → M44f¶ Set matrix to scale by given uniform factor Set matrix to scale by given uniform factor
Other signatures:
setScale( (M44f)arg1, (V3f)arg2) -> M44f
-
M44f.
setShear
((M44f)arg1, (V3f)arg2) → M44f¶ Set matrix to shear by given vector h. The resulting matrix will shear x for each y coord. by a factor of h[0]; will shear x for each z coord. by a factor of h[1]; will shear y for each z coord. by a factor of h[2].
-
M44f.
setTranslation
((M44f)arg1, (V3f)arg2) → M44f¶ Set matrix to translation by given vector
-
M44f.
shear
((M44f)arg1, (V3f)arg2) → M44f¶ Shear the matrix by given vector. The composed matrix will be <shear> * <self>, where the shear matrix ... will shear x for each y coord. by a factor of h[0]; will shear x for each z coord. by a factor of h[1]; will shear y for each z coord. by a factor of h[2].
-
M44f.
toMatrix33
((M44f)arg1) → M33f¶
-
M44f.
translate
((M44f)arg1, (V3f)arg2) → M44f¶ Translate the matrix by t
-
M44f.
translation
((M44f)arg1) → V3f¶ Return translation component
-
M44f.
transpose
((M44f)arg1) → M44f¶
-
M44f.
transposed
((M44f)arg1) → M44f¶
-
static
-
class
Imath.
M44d
¶ -
-
static
M44d.
alignZAxisWithTargetDir
((V3d)arg1, (V3d)arg2) → M44d¶ Returns a matrix that rotates the z-axis so that it points towards “targetDir”. You must also specify that you want the up vector to be pointing in a certain direction “upDir”. Notes: The following degenerate cases are handled: (a) when the directions given by “toDir” and “upDir” are parallel or opposite; (the direction vectors must have a non-zero cross product) (b) when any of the given direction vectors have zero length
-
static
M44d.
baseTypeEpsilon
() → float¶
-
static
M44d.
baseTypeMax
() → float¶
-
static
M44d.
baseTypeMin
() → float¶
-
static
M44d.
baseTypeSmallest
() → float¶
-
M44d.
equalWithAbsError
((M44d)arg1, (M44d)arg2, (float)arg3) → bool¶
-
M44d.
equalWithRelError
((M44d)arg1, (M44d)arg2, (float)arg3) → bool¶
-
M44d.
extractAndRemoveScalingAndShear
((M44d)arg1, (V3d)arg2, (V3d)arg3) → bool¶
-
M44d.
extractEulerXYZ
((M44d)arg1, (V3d)arg2) → None¶ This function assumes that the matrix does not include shear or non-uniform scaling, but it does not examine the matrix to verify this assumption. Matrices with shear or non-uniform scaling are likely to produce meaningless results. Therefore, you should use the removeScalingAndShear() routine, if necessary, prior to calling extractEulerXYZ()
-
M44d.
extractEulerZYX
((M44d)arg1, (V3d)arg2) → None¶ As extractEulerXYZ but with reversed rotation order.
-
M44d.
extractQuat
((M44d)arg1) → Quatd¶
-
M44d.
extractSHRT
((M44d)self, (V3d)scale, (V3d)shear, (V3d)rotate, (V3d)translate, (Order)order) → bool¶ Returns a tuple containing scale, shear, rotate, translate. Returns a tuple containing scale, shear, rotate, translate.
Other signatures:
extractSHRT( (M44d)self, (V3d)scale, (V3d)shear, (Eulerd)rotate, (V3d)translate) -> bool extractSHRT( (M44d)self) -> tuple extractSHRT( (M44d)self, (Order)order) -> tuple extractSHRT( (M44d)arg1, (V3d)scale, (V3d)shear, (V3d)rotate, (V3d)translate) -> bool extractSHRT( (M44d)arg1, (V3d)scale, (V3d)shear, (Eulerd)rotate, (V3d)translate) -> bool
-
M44d.
extractScaling
((M44d)arg1, (V3d)arg2) → bool¶
-
M44d.
extractScalingAndShear
((M44d)arg1, (V3d)arg2, (V3d)arg3) → bool¶
-
M44d.
gjInverse
((M44d)arg1) → M44d¶ Other signatures:
gjInverse( (M44d)arg1, (bool)arg2) -> M44d
-
M44d.
gjInvert
((M44d)arg1) → M44d¶ Other signatures:
gjInvert( (M44d)arg1, (bool)arg2) -> M44d
-
M44d.
identity
= M44d(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1)¶
-
M44d.
inverse
((M44d)arg1) → M44d¶ Other signatures:
inverse( (M44d)arg1, (bool)arg2) -> M44d
-
M44d.
invert
((M44d)arg1) → M44d¶ Other signatures:
invert( (M44d)arg1, (bool)arg2) -> M44d
-
M44d.
makeIdentity
((M44d)arg1) → None¶
-
M44d.
multDirMatrix
((M44d)arg1, (V3d)arg2, (V3d)arg3) → None¶ Vector-times-matrix multiplication; see also the * operators
-
M44d.
multVecMatrix
((M44d)arg1, (V3d)arg2, (V3d)arg3) → None¶ Vector-times-matrix multiplication; see also the * operators
-
M44d.
multiply
((M44d)arg1, (M44d)arg2, (M44d)arg3) → None¶
-
M44d.
negate
((M44d)arg1) → M44d¶
-
M44d.
removeScaling
((M44d)arg1) → bool¶
-
M44d.
removeScalingAndShear
((M44d)arg1) → bool¶
-
M44d.
rotate
((M44d)arg1, (V3d)arg2) → M44d¶ Rotate the matrix by XYZ euler angles in r
-
static
M44d.
rotationMatrix
((V3d)arg1, (V3d)arg2) → M44d¶ Returns a matrix that rotates “fromDirection” vector to “toDirection” vector.
-
static
M44d.
rotationMatrixWithUpDir
((V3d)arg1, (V3d)arg2, (V3d)arg3) → M44d¶ Returns a matrix that rotates the “fromDir” vector so that it points towards “toDir”. You may also specify that you want the up vector to be pointing in a certain direction “upDir”.
-
M44d.
sansScaling
((M44d)arg1) → M44d¶
-
M44d.
sansScalingAndShear
((M44d)arg1) → M44d¶
-
M44d.
scale
((M44d)arg1, (V3d)arg2) → M44d¶ Set matrix to scale by given vector
-
M44d.
setAxisAngle
((M44d)arg1, (V3d)arg2, (float)arg3) → M44d¶ Set matrix to rotation around given axis by given angle
-
M44d.
setEulerAngles
((M44d)arg1, (V3d)arg2) → M44d¶ Set matrix to rotation by XYZ euler angles (in radians)
-
M44d.
setScale
((M44d)arg1, (float)arg2) → M44d¶ Set matrix to scale by given uniform factor Set matrix to scale by given uniform factor
Other signatures:
setScale( (M44d)arg1, (V3d)arg2) -> M44d
-
M44d.
setShear
((M44d)arg1, (V3d)arg2) → M44d¶ Set matrix to shear by given vector h. The resulting matrix will shear x for each y coord. by a factor of h[0]; will shear x for each z coord. by a factor of h[1]; will shear y for each z coord. by a factor of h[2].
-
M44d.
setTranslation
((M44d)arg1, (V3d)arg2) → M44d¶ Set matrix to translation by given vector
-
M44d.
shear
((M44d)arg1, (V3d)arg2) → M44d¶ Shear the matrix by given vector. The composed matrix will be <shear> * <self>, where the shear matrix ... will shear x for each y coord. by a factor of h[0]; will shear x for each z coord. by a factor of h[1]; will shear y for each z coord. by a factor of h[2].
-
M44d.
toMatrix33
((M44d)arg1) → M33d¶
-
M44d.
translate
((M44d)arg1, (V3d)arg2) → M44d¶ Translate the matrix by t
-
M44d.
translation
((M44d)arg1) → V3d¶ Return translation component
-
M44d.
transpose
((M44d)arg1) → M44d¶
-
M44d.
transposed
((M44d)arg1) → M44d¶
-
static
-
class
Imath.
C3f
¶ -
-
C3f.
b
¶
-
C3f.
g
¶
-
static
C3f.
hsv2rgb
((V3f)arg1) → V3f¶
-
C3f.
negate
((C3f)arg1) → C3f¶
-
static
C3f.
packed2rgb
((int)arg1, (V3f)arg2) → None¶
-
C3f.
r
¶
-
static
C3f.
rgb2hsv
((V3f)arg1) → V3f¶
-
static
C3f.
rgb2packed
((V3f)arg1) → int¶
-
-
class
Imath.
Box3f
¶ -
-
Box3f.
center
((Box3f)arg1) → V3f¶
-
Box3f.
extendBy
((Box3f)arg1, (V3f)arg2) → None¶ Other signatures:
extendBy( (Box3f)arg1, (Box3f)arg2) -> None
-
Box3f.
hasVolume
((Box3f)arg1) → bool¶
-
Box3f.
intersects
((Box3f)arg1, (V3f)arg2) → bool¶ Other signatures:
intersects( (Box3f)arg1, (Box3f)arg2) -> bool
-
Box3f.
isEmpty
((Box3f)arg1) → bool¶
-
Box3f.
majorAxis
((Box3f)arg1) → int¶
-
Box3f.
makeEmpty
((Box3f)arg1) → None¶
-
Box3f.
max
¶
-
Box3f.
min
¶
-
Box3f.
size
((Box3f)arg1) → V3f¶
-
-
class
Imath.
C3c
¶ -
-
C3c.
b
¶
-
C3c.
g
¶
-
static
C3c.
hsv2rgb
((V3c)arg1) → V3c¶
-
C3c.
negate
((C3c)arg1) → C3c¶
-
static
C3c.
packed2rgb
((int)arg1, (V3c)arg2) → None¶
-
C3c.
r
¶
-
static
C3c.
rgb2hsv
((V3c)arg1) → V3c¶
-
static
C3c.
rgb2packed
((V3c)arg1) → int¶
-
-
class
Imath.
Box3d
¶ -
-
Box3d.
center
((Box3d)arg1) → V3d¶
-
Box3d.
extendBy
((Box3d)arg1, (V3d)arg2) → None¶ Other signatures:
extendBy( (Box3d)arg1, (Box3d)arg2) -> None
-
Box3d.
hasVolume
((Box3d)arg1) → bool¶
-
Box3d.
intersects
((Box3d)arg1, (V3d)arg2) → bool¶ Other signatures:
intersects( (Box3d)arg1, (Box3d)arg2) -> bool
-
Box3d.
isEmpty
((Box3d)arg1) → bool¶
-
Box3d.
majorAxis
((Box3d)arg1) → int¶
-
Box3d.
makeEmpty
((Box3d)arg1) → None¶
-
Box3d.
max
¶
-
Box3d.
min
¶
-
Box3d.
size
((Box3d)arg1) → V3d¶
-
-
Imath.
succd
((float)arg1) → float¶ Returns double(d+e), where e is the smallest positive number such that double(d+e) != d. Exceptions: If the input value is an infinity or a nan, succf(), predf(), succd(), and predd() all return the input value without changing it.
-
class
Imath.
half
¶ -
bits
¶ Access to the internal representation.
-
isDenormalized
((half)arg1) → bool¶ Returns true if h is a denormalized number.
-
isFinite
((half)arg1) → bool¶ Returns true if h is a normalized number, a denormalized number or zero.
-
isInfinity
((half)arg1) → bool¶ Returns true if h is a positive or a negative infinity.
-
isNan
((half)arg1) → bool¶ Returns true if h is a NAN.
-
isNegative
((half)arg1) → bool¶ Returns true if the sign bit of h is set (negative).
-
isNormalized
((half)arg1) → bool¶ Returns true if h is a normalized number.
-
isZero
((half)arg1) → bool¶ Returns true if h is zero.
-
static
negInf
() → half¶ Returns -infinity.
-
static
posInf
() → half¶ Returns +infinity.
-
static
qNan
() → half¶ Returns a NaN with the bit pattern 0111111111111111
-
round
((half)arg1, (int)arg2) → half¶ Round to n-bit precision (n should be between 0 and 10). After rounding, the significand’s 10-n least significant bits will be zero.
-
static
sNan
() → half¶ Returns a NaN with the bit pattern 0111110111111111
-
-
class
Imath.
Box3s
¶ -
-
Box3s.
center
((Box3s)arg1) → V3s¶
-
Box3s.
extendBy
((Box3s)arg1, (V3s)arg2) → None¶ Other signatures:
extendBy( (Box3s)arg1, (Box3s)arg2) -> None
-
Box3s.
hasVolume
((Box3s)arg1) → bool¶
-
Box3s.
intersects
((Box3s)arg1, (V3s)arg2) → bool¶ Other signatures:
intersects( (Box3s)arg1, (Box3s)arg2) -> bool
-
Box3s.
isEmpty
((Box3s)arg1) → bool¶
-
Box3s.
majorAxis
((Box3s)arg1) → int¶
-
Box3s.
makeEmpty
((Box3s)arg1) → None¶
-
Box3s.
max
¶
-
Box3s.
min
¶
-
Box3s.
size
((Box3s)arg1) → V3s¶
-
-
Imath.
sign
((float)arg1) → int¶
-
Imath.
divs
((int)arg1, (int)arg2) → int¶ Integer division where the remainder of x/y has the same sign as x:
Other signatures:
divs(x,y) == (abs(x) / abs(y)) * (sign(x) * sign(y
-
Imath.
trunc
((float)arg1) → int¶
-
class
Imath.
V2s
¶ -
-
static
V2s.
baseTypeEpsilon
() → int¶
-
static
V2s.
baseTypeMax
() → int¶
-
static
V2s.
baseTypeMin
() → int¶
-
static
V2s.
baseTypeSmallest
() → int¶
-
V2s.
closestVertex
((V2s)v0, (V2s)v1, (V2s)v2, (V2s)p) → V2s¶ Find the vertex of triangle (v0, v1, v2), which is closest to point p
-
V2s.
cross
((V2s)arg1, (V2s)arg2) → int¶
-
static
V2s.
dimensions
() → int¶
-
V2s.
dot
((V2s)arg1, (V2s)arg2) → int¶
-
V2s.
equalWithAbsError
((V2s)arg1, (V2s)arg2, (int)arg3) → bool¶
-
V2s.
equalWithRelError
((V2s)arg1, (V2s)arg2, (int)arg3) → bool¶
-
V2s.
length
((V2s)arg1) → int¶
-
V2s.
length2
((V2s)arg1) → int¶
-
V2s.
negate
((V2s)arg1) → V2s¶
-
V2s.
normalize
((V2s)arg1) → V2s¶
-
V2s.
normalizeExc
((V2s)arg1) → V2s¶
-
V2s.
normalizeNonNull
((V2s)arg1) → V2s¶
-
V2s.
normalized
((V2s)arg1) → V2s¶
-
V2s.
normalizedExc
((V2s)arg1) → V2s¶
-
V2s.
normalizedNonNull
((V2s)arg1) → V2s¶
-
V2s.
orthogonal
((V2s)self, (V2s)t) → V2s¶ Find a vector which is perpendicular to self and in the same plane as self and t
-
static
V2s.
project
((V2s)s, (V2s)t) → V2s¶ Find the projection of vector t onto vector s
-
V2s.
projection
((V2s)arg1, (V2s)arg2) → V2s¶ Find the projection of self onto vector
-
V2s.
reflect
((V2s)self, (V2s)t) → V2s¶ Find the direction of self after reflection off a plane with normal t
-
V2s.
x
¶
-
V2s.
y
¶
-
static
-
Imath.
succf
((float)arg1) → float¶ Returns float(f+e), where e is the smallest positive number such that float(f+e) != f. Exceptions: If the input value is an infinity or a nan, succf(), predf(), succd(), and predd() all return the input value without changing it.
-
Imath.
mods
((int)arg1, (int)arg2) → int¶ Integer remainder where the remainder of x/y has the same sign as x:
Other signatures:
mods(x,y) == x - y * divs(x,
-
Imath.
predd
((float)arg1) → float¶ Returns double(d-e), where e is the smallest positive number such that double(d-e) != d. Exceptions: If the input value is an infinity or a nan, succf(), predf(), succd(), and predd() all return the input value without changing it.
-
Imath.
ulerp
((float)arg1, (float)arg2, (float)arg3) → float¶
-
Imath.
ceil
((float)arg1) → int¶
-
class
Imath.
C4f
¶ -
-
C4f.
a
¶
-
C4f.
b
¶
-
static
C4f.
baseTypeEpsilon
() → float¶
-
static
C4f.
baseTypeMax
() → float¶
-
static
C4f.
baseTypeMin
() → float¶
-
static
C4f.
baseTypeSmallest
() → float¶
-
static
C4f.
dimensions
() → int¶
-
C4f.
g
¶
-
static
C4f.
hsv2rgb
((C4f)arg1) → C4f¶
-
C4f.
negate
((C4f)arg1) → C4f¶
-
static
C4f.
packed2rgb
((int)arg1, (C4f)arg2) → None¶
-
C4f.
r
¶
-
static
C4f.
rgb2hsv
((C4f)arg1) → C4f¶
-
static
C4f.
rgb2packed
((C4f)arg1) → int¶
-
-
class
Imath.
Eulerf
¶ -
class
Axis
¶ -
X
= PyImath.Axis.X¶
-
Y
= PyImath.Axis.Y¶
-
Z
= PyImath.Axis.Z¶
-
names
= {'Y': PyImath.Axis.Y, 'X': PyImath.Axis.X, 'Z': PyImath.Axis.Z}¶
-
values
= {0: PyImath.Axis.X, 1: PyImath.Axis.Y, 2: PyImath.Axis.Z}¶
-
-
class
Eulerf.
InputLayout
¶ -
IJKLayout
= PyImath.InputLayout.IJKLayout¶
-
XYZLayout
= PyImath.InputLayout.XYZLayout¶
-
names
= {'XYZLayout': PyImath.InputLayout.XYZLayout, 'IJKLayout': PyImath.InputLayout.IJKLayout}¶
-
values
= {0: PyImath.InputLayout.XYZLayout, 1: PyImath.InputLayout.IJKLayout}¶
-
-
class
Eulerf.
Order
¶ -
Default
= PyImath.Order.Default¶
-
Legal
= PyImath.Order.Legal¶
-
Max
= PyImath.Order.Max¶
-
Min
= PyImath.Order.Min¶
-
XYX
= PyImath.Order.XYX¶
-
XYXr
= PyImath.Order.XYXr¶
-
XYZ
= PyImath.Order.XYZ¶
-
XYZr
= PyImath.Order.XYZr¶
-
XZX
= PyImath.Order.XZX¶
-
XZXr
= PyImath.Order.XZXr¶
-
XZY
= PyImath.Order.XZY¶
-
XZYr
= PyImath.Order.XZYr¶
-
YXY
= PyImath.Order.YXY¶
-
YXYr
= PyImath.Order.YXYr¶
-
YXZ
= PyImath.Order.YXZ¶
-
YXZr
= PyImath.Order.YXZr¶
-
YZX
= PyImath.Order.YZX¶
-
YZXr
= PyImath.Order.YZXr¶
-
YZY
= PyImath.Order.YZY¶
-
YZYr
= PyImath.Order.YZYr¶
-
ZXY
= PyImath.Order.ZXY¶
-
ZXYr
= PyImath.Order.ZXYr¶
-
ZXZ
= PyImath.Order.ZXZ¶
-
ZXZr
= PyImath.Order.ZXZr¶
-
ZYX
= PyImath.Order.ZYX¶
-
ZYXr
= PyImath.Order.ZYXr¶
-
ZYZ
= PyImath.Order.ZYZ¶
-
ZYZr
= PyImath.Order.ZYZr¶
-
names
= {'Min': PyImath.Order.Min, 'YZYr': PyImath.Order.YZYr, 'XYZr': PyImath.Order.XYZr, 'Legal': PyImath.Order.Legal, 'Max': PyImath.Order.Max, 'YXYr': PyImath.Order.YXYr, 'ZYZ': PyImath.Order.ZYZ, 'ZYX': PyImath.Order.ZYX, 'YXZ': PyImath.Order.YXZ, 'YXY': PyImath.Order.YXY, 'ZXYr': PyImath.Order.ZXYr, 'YZX': PyImath.Order.YZX, 'YZY': PyImath.Order.YZY, 'XZY': PyImath.Order.XZY, 'XZX': PyImath.Order.XZX, 'YZXr': PyImath.Order.YZXr, 'XZYr': PyImath.Order.XZYr, 'Default': PyImath.Order.Default, 'ZXY': PyImath.Order.ZXY, 'ZXZ': PyImath.Order.ZXZ, 'YXZr': PyImath.Order.YXZr, 'ZYXr': PyImath.Order.ZYXr, 'XYX': PyImath.Order.XYX, 'XYZ': PyImath.Order.XYZ, 'ZYZr': PyImath.Order.ZYZr, 'XYXr': PyImath.Order.XYXr, 'XZXr': PyImath.Order.XZXr, 'ZXZr': PyImath.Order.ZXZr}¶
-
values
= {8192: PyImath.Order.XYZr, 257: PyImath.Order.Default, 4112: PyImath.Order.YZYr, 8209: PyImath.Order.ZYZ, 4096: PyImath.Order.YZXr, 4097: PyImath.Order.YXZ, 8465: PyImath.Order.Max, 256: PyImath.Order.ZYXr, 8464: PyImath.Order.XZXr, 4369: PyImath.Order.YZY, 4113: PyImath.Order.YXY, 0: PyImath.Order.Min, 8193: PyImath.Order.ZYX, 272: PyImath.Order.ZYZr, 8449: PyImath.Order.ZXY, 1: PyImath.Order.XZY, 273: PyImath.Order.XYX, 12561: PyImath.Order.Legal, 4352: PyImath.Order.YXZr, 8448: PyImath.Order.XZYr, 4353: PyImath.Order.YZX, 8208: PyImath.Order.XYXr, 17: PyImath.Order.XZX, 4368: PyImath.Order.YXYr, 16: PyImath.Order.ZXZr}¶
-
-
static
Eulerf.
angleMod
((float)arg1) → float¶ Converts an angle to its equivalent in [-PI, PI]
-
Eulerf.
angleOrder
((Eulerf)arg1) → tuple¶ Use this function to unpack angles from ijk form Use this function to determine mapping from xyz to ijk - reshuffles the xyz to match the order
Other signatures:
angleOrder( (Eulerf)arg1) -> tuple
-
Eulerf.
extract
((Eulerf)arg1, (M33f)arg2) → None¶ Other signatures:
extract( (Eulerf)arg1, (M44f)arg2) -> None extract( (Eulerf)arg1, (Quatf)arg2) -> None
-
Eulerf.
frameStatic
¶
-
Eulerf.
initialAxis
¶
-
Eulerf.
initialRepeated
¶
-
static
Eulerf.
legal
((Order)arg1) → bool¶
-
Eulerf.
makeNear
((Eulerf)arg1, (Eulerf)arg2) → None¶
-
static
Eulerf.
nearestRotation
((V3f)xyzRot, (V3f)targetXyzRot[, (Order)order=PyImath.Order.Default]) → None¶ Adjusts xyzRot so that its components differ from targetXyzRot by as little as possible. Note that xyz here really means ijk, because the order must be provided.
-
Eulerf.
order
¶
-
Eulerf.
parityEven
¶
-
Eulerf.
set
((Eulerf)arg1, (Axis)axis, (bool)relative, (bool)parityEven, (bool)firstRepeats) → None¶
-
Eulerf.
setXYZVector
((Eulerf)arg1, (V3f)arg2) → None¶ Set the euler value This does NOT convert the angles, but setXYZVector() does reorder the input vector.
-
static
Eulerf.
simpleXYZRotation
((V3f)xyzRot, (V3f)targetXyzRot) → None¶ Adjusts xyzRot so that its components differ from targetXyzRot by no more than +-PI
-
Eulerf.
toMatrix33
((Eulerf)arg1) → M33f¶
-
Eulerf.
toMatrix44
((Eulerf)arg1) → M44f¶
-
Eulerf.
toQuat
((Eulerf)arg1) → Quatf¶
-
Eulerf.
toXYZVector
((Eulerf)arg1) → V3f¶ Reorders the angles so that the X rotation comes first, followed by the Y and Z. In cases like XYX ordering, the repeated angle will be in the “z” component
-
class
-
class
Imath.
Eulerd
¶ -
class
Axis
¶ -
X
= PyImath.Axis.X¶
-
Y
= PyImath.Axis.Y¶
-
Z
= PyImath.Axis.Z¶
-
names
= {'Y': PyImath.Axis.Y, 'X': PyImath.Axis.X, 'Z': PyImath.Axis.Z}¶
-
values
= {0: PyImath.Axis.X, 1: PyImath.Axis.Y, 2: PyImath.Axis.Z}¶
-
-
class
Eulerd.
InputLayout
¶ -
IJKLayout
= PyImath.InputLayout.IJKLayout¶
-
XYZLayout
= PyImath.InputLayout.XYZLayout¶
-
names
= {'XYZLayout': PyImath.InputLayout.XYZLayout, 'IJKLayout': PyImath.InputLayout.IJKLayout}¶
-
values
= {0: PyImath.InputLayout.XYZLayout, 1: PyImath.InputLayout.IJKLayout}¶
-
-
class
Eulerd.
Order
¶ -
Default
= PyImath.Order.Default¶
-
Legal
= PyImath.Order.Legal¶
-
Max
= PyImath.Order.Max¶
-
Min
= PyImath.Order.Min¶
-
XYX
= PyImath.Order.XYX¶
-
XYXr
= PyImath.Order.XYXr¶
-
XYZ
= PyImath.Order.XYZ¶
-
XYZr
= PyImath.Order.XYZr¶
-
XZX
= PyImath.Order.XZX¶
-
XZXr
= PyImath.Order.XZXr¶
-
XZY
= PyImath.Order.XZY¶
-
XZYr
= PyImath.Order.XZYr¶
-
YXY
= PyImath.Order.YXY¶
-
YXYr
= PyImath.Order.YXYr¶
-
YXZ
= PyImath.Order.YXZ¶
-
YXZr
= PyImath.Order.YXZr¶
-
YZX
= PyImath.Order.YZX¶
-
YZXr
= PyImath.Order.YZXr¶
-
YZY
= PyImath.Order.YZY¶
-
YZYr
= PyImath.Order.YZYr¶
-
ZXY
= PyImath.Order.ZXY¶
-
ZXYr
= PyImath.Order.ZXYr¶
-
ZXZ
= PyImath.Order.ZXZ¶
-
ZXZr
= PyImath.Order.ZXZr¶
-
ZYX
= PyImath.Order.ZYX¶
-
ZYXr
= PyImath.Order.ZYXr¶
-
ZYZ
= PyImath.Order.ZYZ¶
-
ZYZr
= PyImath.Order.ZYZr¶
-
names
= {'Min': PyImath.Order.Min, 'YZYr': PyImath.Order.YZYr, 'XYZr': PyImath.Order.XYZr, 'Legal': PyImath.Order.Legal, 'Max': PyImath.Order.Max, 'YXYr': PyImath.Order.YXYr, 'ZYZ': PyImath.Order.ZYZ, 'ZYX': PyImath.Order.ZYX, 'YXZ': PyImath.Order.YXZ, 'YXY': PyImath.Order.YXY, 'ZXYr': PyImath.Order.ZXYr, 'YZX': PyImath.Order.YZX, 'YZY': PyImath.Order.YZY, 'XZY': PyImath.Order.XZY, 'XZX': PyImath.Order.XZX, 'YZXr': PyImath.Order.YZXr, 'XZYr': PyImath.Order.XZYr, 'Default': PyImath.Order.Default, 'ZXY': PyImath.Order.ZXY, 'ZXZ': PyImath.Order.ZXZ, 'YXZr': PyImath.Order.YXZr, 'ZYXr': PyImath.Order.ZYXr, 'XYX': PyImath.Order.XYX, 'XYZ': PyImath.Order.XYZ, 'ZYZr': PyImath.Order.ZYZr, 'XYXr': PyImath.Order.XYXr, 'XZXr': PyImath.Order.XZXr, 'ZXZr': PyImath.Order.ZXZr}¶
-
values
= {8192: PyImath.Order.XYZr, 257: PyImath.Order.Default, 4112: PyImath.Order.YZYr, 8209: PyImath.Order.ZYZ, 4096: PyImath.Order.YZXr, 4097: PyImath.Order.YXZ, 8465: PyImath.Order.Max, 256: PyImath.Order.ZYXr, 8464: PyImath.Order.XZXr, 4369: PyImath.Order.YZY, 4113: PyImath.Order.YXY, 0: PyImath.Order.Min, 8193: PyImath.Order.ZYX, 272: PyImath.Order.ZYZr, 8449: PyImath.Order.ZXY, 1: PyImath.Order.XZY, 273: PyImath.Order.XYX, 12561: PyImath.Order.Legal, 4352: PyImath.Order.YXZr, 8448: PyImath.Order.XZYr, 4353: PyImath.Order.YZX, 8208: PyImath.Order.XYXr, 17: PyImath.Order.XZX, 4368: PyImath.Order.YXYr, 16: PyImath.Order.ZXZr}¶
-
-
static
Eulerd.
angleMod
((float)arg1) → float¶ Converts an angle to its equivalent in [-PI, PI]
-
Eulerd.
angleOrder
((Eulerd)arg1) → tuple¶ Use this function to unpack angles from ijk form Use this function to determine mapping from xyz to ijk - reshuffles the xyz to match the order
Other signatures:
angleOrder( (Eulerd)arg1) -> tuple
-
Eulerd.
extract
((Eulerd)arg1, (M33d)arg2) → None¶ Other signatures:
extract( (Eulerd)arg1, (M44d)arg2) -> None extract( (Eulerd)arg1, (Quatd)arg2) -> None
-
Eulerd.
frameStatic
¶
-
Eulerd.
initialAxis
¶
-
Eulerd.
initialRepeated
¶
-
static
Eulerd.
legal
((Order)arg1) → bool¶
-
Eulerd.
makeNear
((Eulerd)arg1, (Eulerd)arg2) → None¶
-
static
Eulerd.
nearestRotation
((V3d)xyzRot, (V3d)targetXyzRot[, (Order)order=PyImath.Order.Default]) → None¶ Adjusts xyzRot so that its components differ from targetXyzRot by as little as possible. Note that xyz here really means ijk, because the order must be provided.
-
Eulerd.
order
¶
-
Eulerd.
parityEven
¶
-
Eulerd.
set
((Eulerd)arg1, (Axis)axis, (bool)relative, (bool)parityEven, (bool)firstRepeats) → None¶
-
Eulerd.
setXYZVector
((Eulerd)arg1, (V3d)arg2) → None¶ Set the euler value This does NOT convert the angles, but setXYZVector() does reorder the input vector.
-
static
Eulerd.
simpleXYZRotation
((V3d)xyzRot, (V3d)targetXyzRot) → None¶ Adjusts xyzRot so that its components differ from targetXyzRot by no more than +-PI
-
Eulerd.
toMatrix33
((Eulerd)arg1) → M33d¶
-
Eulerd.
toMatrix44
((Eulerd)arg1) → M44d¶
-
Eulerd.
toQuat
((Eulerd)arg1) → Quatd¶
-
Eulerd.
toXYZVector
((Eulerd)arg1) → V3d¶ Reorders the angles so that the X rotation comes first, followed by the Y and Z. In cases like XYX ordering, the repeated angle will be in the “z” component
-
class
-
class
Imath.
V2f
¶ -
-
static
V2f.
baseTypeEpsilon
() → float¶
-
static
V2f.
baseTypeMax
() → float¶
-
static
V2f.
baseTypeMin
() → float¶
-
static
V2f.
baseTypeSmallest
() → float¶
-
V2f.
closestVertex
((V2f)v0, (V2f)v1, (V2f)v2, (V2f)p) → V2f¶ Find the vertex of triangle (v0, v1, v2), which is closest to point p
-
V2f.
cross
((V2f)arg1, (V2f)arg2) → float¶
-
static
V2f.
dimensions
() → int¶
-
V2f.
dot
((V2f)arg1, (V2f)arg2) → float¶
-
V2f.
equalWithAbsError
((V2f)arg1, (V2f)arg2, (float)arg3) → bool¶
-
V2f.
equalWithRelError
((V2f)arg1, (V2f)arg2, (float)arg3) → bool¶
-
V2f.
length
((V2f)arg1) → float¶
-
V2f.
length2
((V2f)arg1) → float¶
-
V2f.
negate
((V2f)arg1) → V2f¶
-
V2f.
normalize
((V2f)arg1) → V2f¶
-
V2f.
normalizeExc
((V2f)arg1) → V2f¶
-
V2f.
normalizeNonNull
((V2f)arg1) → V2f¶
-
V2f.
normalized
((V2f)arg1) → V2f¶
-
V2f.
normalizedExc
((V2f)arg1) → V2f¶
-
V2f.
normalizedNonNull
((V2f)arg1) → V2f¶
-
V2f.
orthogonal
((V2f)self, (V2f)t) → V2f¶ Find a vector which is perpendicular to self and in the same plane as self and t
-
static
V2f.
project
((V2f)s, (V2f)t) → V2f¶ Find the projection of vector t onto vector s
-
V2f.
projection
((V2f)arg1, (V2f)arg2) → V2f¶ Find the projection of self onto vector
-
V2f.
reflect
((V2f)self, (V2f)t) → V2f¶ Find the direction of self after reflection off a plane with normal t
-
V2f.
x
¶
-
V2f.
y
¶
-
static
-
class
Imath.
V2d
¶ -
-
static
V2d.
baseTypeEpsilon
() → float¶
-
static
V2d.
baseTypeMax
() → float¶
-
static
V2d.
baseTypeMin
() → float¶
-
static
V2d.
baseTypeSmallest
() → float¶
-
V2d.
closestVertex
((V2d)v0, (V2d)v1, (V2d)v2, (V2d)p) → V2d¶ Find the vertex of triangle (v0, v1, v2), which is closest to point p
-
V2d.
cross
((V2d)arg1, (V2d)arg2) → float¶
-
static
V2d.
dimensions
() → int¶
-
V2d.
dot
((V2d)arg1, (V2d)arg2) → float¶
-
V2d.
equalWithAbsError
((V2d)arg1, (V2d)arg2, (float)arg3) → bool¶
-
V2d.
equalWithRelError
((V2d)arg1, (V2d)arg2, (float)arg3) → bool¶
-
V2d.
length
((V2d)arg1) → float¶
-
V2d.
length2
((V2d)arg1) → float¶
-
V2d.
negate
((V2d)arg1) → V2d¶
-
V2d.
normalize
((V2d)arg1) → V2d¶
-
V2d.
normalizeExc
((V2d)arg1) → V2d¶
-
V2d.
normalizeNonNull
((V2d)arg1) → V2d¶
-
V2d.
normalized
((V2d)arg1) → V2d¶
-
V2d.
normalizedExc
((V2d)arg1) → V2d¶
-
V2d.
normalizedNonNull
((V2d)arg1) → V2d¶
-
V2d.
orthogonal
((V2d)self, (V2d)t) → V2d¶ Find a vector which is perpendicular to self and in the same plane as self and t
-
static
V2d.
project
((V2d)s, (V2d)t) → V2d¶ Find the projection of vector t onto vector s
-
V2d.
projection
((V2d)arg1, (V2d)arg2) → V2d¶ Find the projection of self onto vector
-
V2d.
reflect
((V2d)self, (V2d)t) → V2d¶ Find the direction of self after reflection off a plane with normal t
-
V2d.
x
¶
-
V2d.
y
¶
-
static
-
class
Imath.
V2i
¶ -
-
static
V2i.
baseTypeEpsilon
() → int¶
-
static
V2i.
baseTypeMax
() → int¶
-
static
V2i.
baseTypeMin
() → int¶
-
static
V2i.
baseTypeSmallest
() → int¶
-
V2i.
closestVertex
((V2i)v0, (V2i)v1, (V2i)v2, (V2i)p) → V2i¶ Find the vertex of triangle (v0, v1, v2), which is closest to point p
-
V2i.
cross
((V2i)arg1, (V2i)arg2) → int¶
-
static
V2i.
dimensions
() → int¶
-
V2i.
dot
((V2i)arg1, (V2i)arg2) → int¶
-
V2i.
equalWithAbsError
((V2i)arg1, (V2i)arg2, (int)arg3) → bool¶
-
V2i.
equalWithRelError
((V2i)arg1, (V2i)arg2, (int)arg3) → bool¶
-
V2i.
length
((V2i)arg1) → int¶
-
V2i.
length2
((V2i)arg1) → int¶
-
V2i.
negate
((V2i)arg1) → V2i¶
-
V2i.
normalize
((V2i)arg1) → V2i¶
-
V2i.
normalizeExc
((V2i)arg1) → V2i¶
-
V2i.
normalizeNonNull
((V2i)arg1) → V2i¶
-
V2i.
normalized
((V2i)arg1) → V2i¶
-
V2i.
normalizedExc
((V2i)arg1) → V2i¶
-
V2i.
normalizedNonNull
((V2i)arg1) → V2i¶
-
V2i.
orthogonal
((V2i)self, (V2i)t) → V2i¶ Find a vector which is perpendicular to self and in the same plane as self and t
-
static
V2i.
project
((V2i)s, (V2i)t) → V2i¶ Find the projection of vector t onto vector s
-
V2i.
projection
((V2i)arg1, (V2i)arg2) → V2i¶ Find the projection of self onto vector
-
V2i.
reflect
((V2i)self, (V2i)t) → V2i¶ Find the direction of self after reflection off a plane with normal t
-
V2i.
x
¶
-
V2i.
y
¶
-
static
-
Imath.
cmp
((float)arg1, (float)arg2) → int¶