Imath
(Python)¶
- class Imath.Box2d¶
Bases:
pybind11_builtins.pybind11_object
- class Box2dIterator¶
Bases:
pybind11_builtins.pybind11_object
Imath Iterator
- __init__(*args, **kwargs)¶
Overloaded function.
__init__(self: PyImath.Box2d) -> None
Returns an empty box.
__init__(self: PyImath.Box2d, point: PyImath.V2d) -> None
Returns a box with min and max both set to the given point.
__init__(self: PyImath.Box2d, min: PyImath.V2d, max: PyImath.V2d) -> None
Returns a box with min and max points defined by the given points.
__init__(self: PyImath.Box2d, iterable: object) -> None
Returns a box using values from the given iterable.
- center() → PyImath.V2d¶
Returns the central point of this box.
- extendBy(*args, **kwargs)¶
Overloaded function.
extendBy(self: PyImath.Box2d, point: PyImath.V2d) -> None
Extends this box to include the given point.
extendBy(self: PyImath.Box2d, box: PyImath.Box2d) -> None
Extends this box to include the given box.
- hasVolume() → bool¶
Returns True if this box has volume.
- intersects(*args, **kwargs)¶
Overloaded function.
intersects(self: PyImath.Box2d, point: PyImath.V2d) -> bool
Returns True if this box encompasses the given point.
intersects(self: PyImath.Box2d, box: PyImath.Box2d) -> bool
Returns True if this box intersects the given box.
- isEmpty() → bool¶
Returns True if this box has no volume.
- majorAxis() → int¶
Returns the index of the longest axis of this box.
- makeEmpty() → None¶
Converts this box to an empty box.
- property max¶
The maximum corner of this box.
- property min¶
The minimum corner of this box.
- size() → PyImath.V2d¶
Returns the volume of this box.
- class Imath.Box2f¶
Bases:
pybind11_builtins.pybind11_object
- class Box2fIterator¶
Bases:
pybind11_builtins.pybind11_object
Imath Iterator
- __init__(*args, **kwargs)¶
Overloaded function.
__init__(self: PyImath.Box2f) -> None
Returns an empty box.
__init__(self: PyImath.Box2f, point: PyImath.V2f) -> None
Returns a box with min and max both set to the given point.
__init__(self: PyImath.Box2f, min: PyImath.V2f, max: PyImath.V2f) -> None
Returns a box with min and max points defined by the given points.
__init__(self: PyImath.Box2f, iterable: object) -> None
Returns a box using values from the given iterable.
- center() → PyImath.V2f¶
Returns the central point of this box.
- extendBy(*args, **kwargs)¶
Overloaded function.
extendBy(self: PyImath.Box2f, point: PyImath.V2f) -> None
Extends this box to include the given point.
extendBy(self: PyImath.Box2f, box: PyImath.Box2f) -> None
Extends this box to include the given box.
- hasVolume() → bool¶
Returns True if this box has volume.
- intersects(*args, **kwargs)¶
Overloaded function.
intersects(self: PyImath.Box2f, point: PyImath.V2f) -> bool
Returns True if this box encompasses the given point.
intersects(self: PyImath.Box2f, box: PyImath.Box2f) -> bool
Returns True if this box intersects the given box.
- isEmpty() → bool¶
Returns True if this box has no volume.
- majorAxis() → int¶
Returns the index of the longest axis of this box.
- makeEmpty() → None¶
Converts this box to an empty box.
- property max¶
The maximum corner of this box.
- property min¶
The minimum corner of this box.
- size() → PyImath.V2f¶
Returns the volume of this box.
- class Imath.Box2i¶
Bases:
pybind11_builtins.pybind11_object
- class Box2iIterator¶
Bases:
pybind11_builtins.pybind11_object
Imath Iterator
- __init__(*args, **kwargs)¶
Overloaded function.
__init__(self: PyImath.Box2i) -> None
Returns an empty box.
__init__(self: PyImath.Box2i, point: PyImath.V2i) -> None
Returns a box with min and max both set to the given point.
__init__(self: PyImath.Box2i, min: PyImath.V2i, max: PyImath.V2i) -> None
Returns a box with min and max points defined by the given points.
__init__(self: PyImath.Box2i, iterable: object) -> None
Returns a box using values from the given iterable.
- center() → PyImath.V2i¶
Returns the central point of this box.
- extendBy(*args, **kwargs)¶
Overloaded function.
extendBy(self: PyImath.Box2i, point: PyImath.V2i) -> None
Extends this box to include the given point.
extendBy(self: PyImath.Box2i, box: PyImath.Box2i) -> None
Extends this box to include the given box.
- hasVolume() → bool¶
Returns True if this box has volume.
- intersects(*args, **kwargs)¶
Overloaded function.
intersects(self: PyImath.Box2i, point: PyImath.V2i) -> bool
Returns True if this box encompasses the given point.
intersects(self: PyImath.Box2i, box: PyImath.Box2i) -> bool
Returns True if this box intersects the given box.
- isEmpty() → bool¶
Returns True if this box has no volume.
- majorAxis() → int¶
Returns the index of the longest axis of this box.
- makeEmpty() → None¶
Converts this box to an empty box.
- property max¶
The maximum corner of this box.
- property min¶
The minimum corner of this box.
- size() → PyImath.V2i¶
Returns the volume of this box.
- class Imath.Box2s¶
Bases:
pybind11_builtins.pybind11_object
- class Box2sIterator¶
Bases:
pybind11_builtins.pybind11_object
Imath Iterator
- __init__(*args, **kwargs)¶
Overloaded function.
__init__(self: PyImath.Box2s) -> None
Returns an empty box.
__init__(self: PyImath.Box2s, point: PyImath.V2s) -> None
Returns a box with min and max both set to the given point.
__init__(self: PyImath.Box2s, min: PyImath.V2s, max: PyImath.V2s) -> None
Returns a box with min and max points defined by the given points.
__init__(self: PyImath.Box2s, iterable: object) -> None
Returns a box using values from the given iterable.
- center() → PyImath.V2s¶
Returns the central point of this box.
- extendBy(*args, **kwargs)¶
Overloaded function.
extendBy(self: PyImath.Box2s, point: PyImath.V2s) -> None
Extends this box to include the given point.
extendBy(self: PyImath.Box2s, box: PyImath.Box2s) -> None
Extends this box to include the given box.
- hasVolume() → bool¶
Returns True if this box has volume.
- intersects(*args, **kwargs)¶
Overloaded function.
intersects(self: PyImath.Box2s, point: PyImath.V2s) -> bool
Returns True if this box encompasses the given point.
intersects(self: PyImath.Box2s, box: PyImath.Box2s) -> bool
Returns True if this box intersects the given box.
- isEmpty() → bool¶
Returns True if this box has no volume.
- majorAxis() → int¶
Returns the index of the longest axis of this box.
- makeEmpty() → None¶
Converts this box to an empty box.
- property max¶
The maximum corner of this box.
- property min¶
The minimum corner of this box.
- size() → PyImath.V2s¶
Returns the volume of this box.
- class Imath.Box3d¶
Bases:
pybind11_builtins.pybind11_object
- class Box3dIterator¶
Bases:
pybind11_builtins.pybind11_object
Imath Iterator
- __init__(*args, **kwargs)¶
Overloaded function.
__init__(self: PyImath.Box3d) -> None
Returns an empty box.
__init__(self: PyImath.Box3d, point: PyImath.V3d) -> None
Returns a box with min and max both set to the given point.
__init__(self: PyImath.Box3d, min: PyImath.V3d, max: PyImath.V3d) -> None
Returns a box with min and max points defined by the given points.
__init__(self: PyImath.Box3d, iterable: object) -> None
Returns a box using values from the given iterable.
- center() → PyImath.V3d¶
Returns the central point of this box.
- extendBy(*args, **kwargs)¶
Overloaded function.
extendBy(self: PyImath.Box3d, point: PyImath.V3d) -> None
Extends this box to include the given point.
extendBy(self: PyImath.Box3d, box: PyImath.Box3d) -> None
Extends this box to include the given box.
- hasVolume() → bool¶
Returns True if this box has volume.
- intersects(*args, **kwargs)¶
Overloaded function.
intersects(self: PyImath.Box3d, point: PyImath.V3d) -> bool
Returns True if this box encompasses the given point.
intersects(self: PyImath.Box3d, box: PyImath.Box3d) -> bool
Returns True if this box intersects the given box.
- isEmpty() → bool¶
Returns True if this box has no volume.
- majorAxis() → int¶
Returns the index of the longest axis of this box.
- makeEmpty() → None¶
Converts this box to an empty box.
- property max¶
The maximum corner of this box.
- property min¶
The minimum corner of this box.
- size() → PyImath.V3d¶
Returns the volume of this box.
- class Imath.Box3f¶
Bases:
pybind11_builtins.pybind11_object
- class Box3fIterator¶
Bases:
pybind11_builtins.pybind11_object
Imath Iterator
- __init__(*args, **kwargs)¶
Overloaded function.
__init__(self: PyImath.Box3f) -> None
Returns an empty box.
__init__(self: PyImath.Box3f, point: PyImath.V3f) -> None
Returns a box with min and max both set to the given point.
__init__(self: PyImath.Box3f, min: PyImath.V3f, max: PyImath.V3f) -> None
Returns a box with min and max points defined by the given points.
__init__(self: PyImath.Box3f, iterable: object) -> None
Returns a box using values from the given iterable.
- center() → PyImath.V3f¶
Returns the central point of this box.
- extendBy(*args, **kwargs)¶
Overloaded function.
extendBy(self: PyImath.Box3f, point: PyImath.V3f) -> None
Extends this box to include the given point.
extendBy(self: PyImath.Box3f, box: PyImath.Box3f) -> None
Extends this box to include the given box.
- hasVolume() → bool¶
Returns True if this box has volume.
- intersects(*args, **kwargs)¶
Overloaded function.
intersects(self: PyImath.Box3f, point: PyImath.V3f) -> bool
Returns True if this box encompasses the given point.
intersects(self: PyImath.Box3f, box: PyImath.Box3f) -> bool
Returns True if this box intersects the given box.
- isEmpty() → bool¶
Returns True if this box has no volume.
- majorAxis() → int¶
Returns the index of the longest axis of this box.
- makeEmpty() → None¶
Converts this box to an empty box.
- property max¶
The maximum corner of this box.
- property min¶
The minimum corner of this box.
- size() → PyImath.V3f¶
Returns the volume of this box.
- class Imath.Box3i¶
Bases:
pybind11_builtins.pybind11_object
- class Box3iIterator¶
Bases:
pybind11_builtins.pybind11_object
Imath Iterator
- __init__(*args, **kwargs)¶
Overloaded function.
__init__(self: PyImath.Box3i) -> None
Returns an empty box.
__init__(self: PyImath.Box3i, point: PyImath.V3i) -> None
Returns a box with min and max both set to the given point.
__init__(self: PyImath.Box3i, min: PyImath.V3i, max: PyImath.V3i) -> None
Returns a box with min and max points defined by the given points.
__init__(self: PyImath.Box3i, iterable: object) -> None
Returns a box using values from the given iterable.
- center() → PyImath.V3i¶
Returns the central point of this box.
- extendBy(*args, **kwargs)¶
Overloaded function.
extendBy(self: PyImath.Box3i, point: PyImath.V3i) -> None
Extends this box to include the given point.
extendBy(self: PyImath.Box3i, box: PyImath.Box3i) -> None
Extends this box to include the given box.
- hasVolume() → bool¶
Returns True if this box has volume.
- intersects(*args, **kwargs)¶
Overloaded function.
intersects(self: PyImath.Box3i, point: PyImath.V3i) -> bool
Returns True if this box encompasses the given point.
intersects(self: PyImath.Box3i, box: PyImath.Box3i) -> bool
Returns True if this box intersects the given box.
- isEmpty() → bool¶
Returns True if this box has no volume.
- majorAxis() → int¶
Returns the index of the longest axis of this box.
- makeEmpty() → None¶
Converts this box to an empty box.
- property max¶
The maximum corner of this box.
- property min¶
The minimum corner of this box.
- size() → PyImath.V3i¶
Returns the volume of this box.
- class Imath.Box3s¶
Bases:
pybind11_builtins.pybind11_object
- class Box3sIterator¶
Bases:
pybind11_builtins.pybind11_object
Imath Iterator
- __init__(*args, **kwargs)¶
Overloaded function.
__init__(self: PyImath.Box3s) -> None
Returns an empty box.
__init__(self: PyImath.Box3s, point: PyImath.V3s) -> None
Returns a box with min and max both set to the given point.
__init__(self: PyImath.Box3s, min: PyImath.V3s, max: PyImath.V3s) -> None
Returns a box with min and max points defined by the given points.
__init__(self: PyImath.Box3s, iterable: object) -> None
Returns a box using values from the given iterable.
- center() → PyImath.V3s¶
Returns the central point of this box.
- extendBy(*args, **kwargs)¶
Overloaded function.
extendBy(self: PyImath.Box3s, point: PyImath.V3s) -> None
Extends this box to include the given point.
extendBy(self: PyImath.Box3s, box: PyImath.Box3s) -> None
Extends this box to include the given box.
- hasVolume() → bool¶
Returns True if this box has volume.
- intersects(*args, **kwargs)¶
Overloaded function.
intersects(self: PyImath.Box3s, point: PyImath.V3s) -> bool
Returns True if this box encompasses the given point.
intersects(self: PyImath.Box3s, box: PyImath.Box3s) -> bool
Returns True if this box intersects the given box.
- isEmpty() → bool¶
Returns True if this box has no volume.
- majorAxis() → int¶
Returns the index of the longest axis of this box.
- makeEmpty() → None¶
Converts this box to an empty box.
- property max¶
The maximum corner of this box.
- property min¶
The minimum corner of this box.
- size() → PyImath.V3s¶
Returns the volume of this box.
- class Imath.C3c¶
Bases:
PyImath.V3c
- class C3cIterator¶
Bases:
pybind11_builtins.pybind11_object
Imath Iterator
- __init__(*args, **kwargs)¶
Overloaded function.
__init__(self: PyImath.C3c) -> None
Initializes a color with all channels zero.
__init__(self: PyImath.C3c, value: object) -> None
Initializes a color from the given number of iterable.
__init__(self: PyImath.C3c, arg0: int, arg1: int, arg2: int) -> None
Initializes a color from RGB values.
- property b¶
The blue channel of this color.
- property g¶
The green channel of this color.
- static hsv2rgb(arg0: PyImath.V3c) → PyImath.V3c¶
Convert the given HSV color to RGB.
- negate() → PyImath.C3c¶
Negates this color’s channels.
- static packed2rgb(arg0: int, arg1: PyImath.V3c) → None¶
Convert the given packed color to RGB.
- property r¶
The red channel of this color.
- static rgb2hsv(arg0: PyImath.V3c) → PyImath.V3c¶
Convert the given RGB color to HSV.
- static rgb2packed(arg0: PyImath.V3c) → int¶
Convert the given RGB color to packed format.
- class Imath.C3f¶
Bases:
PyImath.V3f
- class C3fIterator¶
Bases:
pybind11_builtins.pybind11_object
Imath Iterator
- __init__(*args, **kwargs)¶
Overloaded function.
__init__(self: PyImath.C3f) -> None
Initializes a color with all channels zero.
__init__(self: PyImath.C3f, value: object) -> None
Initializes a color from the given number of iterable.
__init__(self: PyImath.C3f, arg0: float, arg1: float, arg2: float) -> None
Initializes a color from RGB values.
- property b¶
The blue channel of this color.
- property g¶
The green channel of this color.
- static hsv2rgb(arg0: PyImath.V3f) → PyImath.V3f¶
Convert the given HSV color to RGB.
- negate() → PyImath.C3f¶
Negates this color’s channels.
- static packed2rgb(arg0: int, arg1: PyImath.V3f) → None¶
Convert the given packed color to RGB.
- property r¶
The red channel of this color.
- static rgb2hsv(arg0: PyImath.V3f) → PyImath.V3f¶
Convert the given RGB color to HSV.
- static rgb2packed(arg0: PyImath.V3f) → int¶
Convert the given RGB color to packed format.
- class Imath.C3h¶
Bases:
PyImath.V3h
- class C3hIterator¶
Bases:
pybind11_builtins.pybind11_object
Imath Iterator
- __init__(*args, **kwargs)¶
Overloaded function.
__init__(self: PyImath.C3h) -> None
Initializes a color with all channels zero.
__init__(self: PyImath.C3h, value: object) -> None
Initializes a color from the given number of iterable.
__init__(self: PyImath.C3h, arg0: Imath_3_1::half, arg1: Imath_3_1::half, arg2: Imath_3_1::half) -> None
Initializes a color from RGB values.
- property b¶
The blue channel of this color.
- property g¶
The green channel of this color.
- static hsv2rgb(arg0: PyImath.V3h) → PyImath.V3h¶
Convert the given HSV color to RGB.
- negate() → PyImath.C3h¶
Negates this color’s channels.
- static packed2rgb(arg0: int, arg1: PyImath.V3h) → None¶
Convert the given packed color to RGB.
- property r¶
The red channel of this color.
- static rgb2hsv(arg0: PyImath.V3h) → PyImath.V3h¶
Convert the given RGB color to HSV.
- static rgb2packed(arg0: PyImath.V3h) → int¶
Convert the given RGB color to packed format.
- class Imath.C4c¶
Bases:
pybind11_builtins.pybind11_object
- class C4cIterator¶
Bases:
pybind11_builtins.pybind11_object
Imath Iterator
- __init__(*args, **kwargs)¶
Overloaded function.
__init__(self: PyImath.C4c) -> None
Initializes a color with all channels zero.
__init__(self: PyImath.C4c, value: object) -> None
Initializes a color from the given number of iterable.
__init__(self: PyImath.C4c, arg0: int, arg1: int, arg2: int, arg3: int) -> None
Initializes a color from RGBA values.
- property a¶
The alpha channel of this color.
- property b¶
The blue channel of this color.
- static baseTypeEpsilon() → int¶
Returns a suitable epsilon for comparing values of the underlying component type.
- static baseTypeLowest() → int¶
Returns the smallest value of the underlying component type.
- static baseTypeMax() → int¶
Returns the largest value of the underlying component type.
- static baseTypeSmallest() → int¶
Returns the smallest positive value of the underlying component type.
- static dimensions() → int¶
- property g¶
The green channel of this color.
- static hsv2rgb(arg0: PyImath.C4c) → PyImath.C4c¶
Convert the given HSV color to RGB.
- negate() → PyImath.C4c¶
Negates this color’s channels.
- static packed2rgb(arg0: int, arg1: PyImath.C4c) → None¶
Convert the given packed color to RGB.
- property r¶
The red channel of this color.
- static rgb2hsv(arg0: PyImath.C4c) → PyImath.C4c¶
Convert the given RGB color to HSV.
- static rgb2packed(arg0: PyImath.C4c) → int¶
Convert the given RGB color to packed format.
- class Imath.C4f¶
Bases:
pybind11_builtins.pybind11_object
- class C4fIterator¶
Bases:
pybind11_builtins.pybind11_object
Imath Iterator
- __init__(*args, **kwargs)¶
Overloaded function.
__init__(self: PyImath.C4f) -> None
Initializes a color with all channels zero.
__init__(self: PyImath.C4f, value: object) -> None
Initializes a color from the given number of iterable.
__init__(self: PyImath.C4f, arg0: float, arg1: float, arg2: float, arg3: float) -> None
Initializes a color from RGBA values.
- property a¶
The alpha channel of this color.
- property b¶
The blue channel of this color.
- static baseTypeEpsilon() → float¶
Returns a suitable epsilon for comparing values of the underlying component type.
- static baseTypeLowest() → float¶
Returns the smallest value of the underlying component type.
- static baseTypeMax() → float¶
Returns the largest value of the underlying component type.
- static baseTypeSmallest() → float¶
Returns the smallest positive value of the underlying component type.
- static dimensions() → int¶
- property g¶
The green channel of this color.
- static hsv2rgb(arg0: PyImath.C4f) → PyImath.C4f¶
Convert the given HSV color to RGB.
- negate() → PyImath.C4f¶
Negates this color’s channels.
- static packed2rgb(arg0: int, arg1: PyImath.C4f) → None¶
Convert the given packed color to RGB.
- property r¶
The red channel of this color.
- static rgb2hsv(arg0: PyImath.C4f) → PyImath.C4f¶
Convert the given RGB color to HSV.
- static rgb2packed(arg0: PyImath.C4f) → int¶
Convert the given RGB color to packed format.
- class Imath.C4h¶
Bases:
pybind11_builtins.pybind11_object
- class C4hIterator¶
Bases:
pybind11_builtins.pybind11_object
Imath Iterator
- __init__(*args, **kwargs)¶
Overloaded function.
__init__(self: PyImath.C4h) -> None
Initializes a color with all channels zero.
__init__(self: PyImath.C4h, value: object) -> None
Initializes a color from the given number of iterable.
__init__(self: PyImath.C4h, arg0: Imath_3_1::half, arg1: Imath_3_1::half, arg2: Imath_3_1::half, arg3: Imath_3_1::half) -> None
Initializes a color from RGBA values.
- property a¶
The alpha channel of this color.
- property b¶
The blue channel of this color.
- static baseTypeEpsilon() → Imath_3_1::half¶
Returns a suitable epsilon for comparing values of the underlying component type.
- static baseTypeLowest() → Imath_3_1::half¶
Returns the smallest value of the underlying component type.
- static baseTypeMax() → Imath_3_1::half¶
Returns the largest value of the underlying component type.
- static baseTypeSmallest() → Imath_3_1::half¶
Returns the smallest positive value of the underlying component type.
- static dimensions() → int¶
- property g¶
The green channel of this color.
- static hsv2rgb(arg0: PyImath.C4h) → PyImath.C4h¶
Convert the given HSV color to RGB.
- negate() → PyImath.C4h¶
Negates this color’s channels.
- static packed2rgb(arg0: int, arg1: PyImath.C4h) → None¶
Convert the given packed color to RGB.
- property r¶
The red channel of this color.
- static rgb2hsv(arg0: PyImath.C4h) → PyImath.C4h¶
Convert the given RGB color to HSV.
- static rgb2packed(arg0: PyImath.C4h) → int¶
Convert the given RGB color to packed format.
- class Imath.Eulerd¶
Bases:
PyImath.V3d
- class Axis¶
Bases:
pybind11_builtins.pybind11_object
Members:
X
Y
Z
- X = <Axis.X: 0>¶
- Y = <Axis.Y: 1>¶
- Z = <Axis.Z: 2>¶
- __init__(value: int) → None¶
- property name¶
- property value¶
- class InputLayout¶
Bases:
pybind11_builtins.pybind11_object
Members:
XYZLayout
IJKLayout
- IJKLayout = <InputLayout.IJKLayout: 1>¶
- XYZLayout = <InputLayout.XYZLayout: 0>¶
- __init__(value: int) → None¶
- property name¶
- property value¶
- class Order¶
Bases:
pybind11_builtins.pybind11_object
Members:
XYZ
XZY
YZX
YXZ
ZXY
ZYX
XZX
XYX
YXY
YZY
ZYZ
ZXZ
XYZr
XZYr
YZXr
YXZr
ZXYr
ZYXr
XZXr
XYXr
YXYr
YZYr
ZYZr
ZXZr
Legal
Min
Max
Default
- Default = <Order.XYZ: 257>¶
- Legal = <Order.Legal: 12561>¶
- Max = <Order.ZXZ: 8465>¶
- Min = <Order.ZXYr: 0>¶
- XYX = <Order.XYX: 273>¶
- XYXr = <Order.XYXr: 8208>¶
- XYZ = <Order.XYZ: 257>¶
- XYZr = <Order.XYZr: 8192>¶
- XZX = <Order.XZX: 17>¶
- XZXr = <Order.XZXr: 8464>¶
- XZY = <Order.XZY: 1>¶
- XZYr = <Order.XZYr: 8448>¶
- YXY = <Order.YXY: 4113>¶
- YXYr = <Order.YXYr: 4368>¶
- YXZ = <Order.YXZ: 4097>¶
- YXZr = <Order.YXZr: 4352>¶
- YZX = <Order.YZX: 4353>¶
- YZXr = <Order.YZXr: 4096>¶
- YZY = <Order.YZY: 4369>¶
- YZYr = <Order.YZYr: 4112>¶
- ZXY = <Order.ZXY: 8449>¶
- ZXYr = <Order.ZXYr: 0>¶
- ZXZ = <Order.ZXZ: 8465>¶
- ZXZr = <Order.ZXZr: 16>¶
- ZYX = <Order.ZYX: 8193>¶
- ZYXr = <Order.ZYXr: 256>¶
- ZYZ = <Order.ZYZ: 8209>¶
- ZYZr = <Order.ZYZr: 272>¶
- __init__(value: int) → None¶
- property name¶
- property value¶
- __init__(*args, **kwargs)¶
Overloaded function.
__init__(self: PyImath.Eulerd, order: PyImath.Eulerd.Order = <Order.XYZ: 257>) -> None
Initializes Euler angles with zero values and given order.
__init__(self: PyImath.Eulerd, vec: PyImath.V3d, order: PyImath.Eulerd.Order, layout: PyImath.Eulerd.InputLayout = <InputLayout.IJKLayout: 1>) -> None
Initializes Euler angles from the given vector, order and input data layout.
__init__(self: PyImath.Eulerd, x: float, y: float, z: float, order: PyImath.Eulerd.Order = <Order.XYZ: 257>, layout: PyImath.Eulerd.InputLayout = <InputLayout.IJKLayout: 1>) -> None
Initializes Euler angles from the three given scalars, read using the given order and layout.
__init__(self: PyImath.Eulerd, other: PyImath.Eulerd, order: PyImath.Eulerd.Order) -> None
Initializes Euler angles from another Euler angles object, using converting to the given order.
__init__(self: PyImath.Eulerd, mat: PyImath.M33d, order: PyImath.Eulerd.Order = <Order.XYZ: 257>) -> None
Initializes Euler angles from the given 3x3 matrix and order.
__init__(self: PyImath.Eulerd, mat: PyImath.M44d, order: PyImath.Eulerd.Order = <Order.XYZ: 257>) -> None
Initializes Euler angles from the given 4x4 matrix and order.
- static angleMod(arg0: float) → float¶
Converts an angle to its equivalent in [-pi, pi].
- angleOrder() → Tuple[int, int, int]¶
Returns a 3-tuple of axis indices for this Euler object.
- extract(*args, **kwargs)¶
Overloaded function.
extract(self: PyImath.Eulerd, mat: PyImath.M33d) -> None
Sets the Euler values from the given 3x3 matrix. The given matrix must not contain shear or non-uniform scaling.
extract(self: PyImath.Eulerd, mat: PyImath.M44d) -> None
Sets the Euler values from the given 4x4 matrix. The given matrix must not contain shear or non-uniform scaling.
extract(self: PyImath.Eulerd, quat: Imath_3_1::Quat<double>) -> None
Sets the Euler values from the given quaternion.
- property frameStatic¶
True if this Euler’s order is not a relative order.
- property initialAxis¶
The initial Axis of this Euler.
- property initialRepeated¶
True if this Euler’s order has a repeated axis.
- static legal(order: PyImath.Eulerd.Order) → bool¶
Returns True if the given order is a legal permutation.
- makeNear(arg0: PyImath.Eulerd) → None¶
Adjusts this Euler object so that its components differ from target by as little as possible. This method may not work correctly for Eulers with different orders, or repeated axes or relative orders.
- static nearestRotation(xyzRot: PyImath.V3d, targetXyzRot: PyImath.V3d, order: PyImath.Eulerd.Order = <Order.XYZ: 257>) → None¶
Adjusts xyzRot so that its components differ from targetXyzRot by as little as possible. Note that xyz here really means ijk, because the order must be provided.
- property order¶
The order of thie Euler object.
- property parityEven¶
True if this Euler’s order represents a right-handed coordinate system.
- set(axis: PyImath.Eulerd.Axis, relative: bool, parityEven: bool, firstRepeats: bool) → None¶
Set the order of this Euler object.
- setXYZVector(vec: PyImath.V3d) → None¶
Sets the values, reordering the input components if this Euler object is not XYZ-ordered.
- static simpleXYZRotation(xyzRot: PyImath.V3d, targetXyzRot: PyImath.V3d) → None¶
Adjusts xyzRot so that its components differ from targetXyzRot by no more than +-pi.
- toMatrix33() → PyImath.M33d¶
Converts this Euler object to a 3x3 matrix.
- toMatrix44() → PyImath.M44d¶
Converts this Euler object to a 4x4 matrix.
- toQuat() → Imath_3_1::Quat<double>¶
Converts this Euler object to a quaternion.
- toXYZVector() → PyImath.V3d¶
Converts this Euler object to a vector, reordering the angles so that the x rotation comes first, followed by y and z. In cases like XYX ordering, the repeated angle will be in the z component.
- class Imath.Eulerf¶
Bases:
PyImath.V3f
- class Axis¶
Bases:
pybind11_builtins.pybind11_object
Members:
X
Y
Z
- X = <Axis.X: 0>¶
- Y = <Axis.Y: 1>¶
- Z = <Axis.Z: 2>¶
- __init__(value: int) → None¶
- property name¶
- property value¶
- class InputLayout¶
Bases:
pybind11_builtins.pybind11_object
Members:
XYZLayout
IJKLayout
- IJKLayout = <InputLayout.IJKLayout: 1>¶
- XYZLayout = <InputLayout.XYZLayout: 0>¶
- __init__(value: int) → None¶
- property name¶
- property value¶
- class Order¶
Bases:
pybind11_builtins.pybind11_object
Members:
XYZ
XZY
YZX
YXZ
ZXY
ZYX
XZX
XYX
YXY
YZY
ZYZ
ZXZ
XYZr
XZYr
YZXr
YXZr
ZXYr
ZYXr
XZXr
XYXr
YXYr
YZYr
ZYZr
ZXZr
Legal
Min
Max
Default
- Default = <Order.XYZ: 257>¶
- Legal = <Order.Legal: 12561>¶
- Max = <Order.ZXZ: 8465>¶
- Min = <Order.ZXYr: 0>¶
- XYX = <Order.XYX: 273>¶
- XYXr = <Order.XYXr: 8208>¶
- XYZ = <Order.XYZ: 257>¶
- XYZr = <Order.XYZr: 8192>¶
- XZX = <Order.XZX: 17>¶
- XZXr = <Order.XZXr: 8464>¶
- XZY = <Order.XZY: 1>¶
- XZYr = <Order.XZYr: 8448>¶
- YXY = <Order.YXY: 4113>¶
- YXYr = <Order.YXYr: 4368>¶
- YXZ = <Order.YXZ: 4097>¶
- YXZr = <Order.YXZr: 4352>¶
- YZX = <Order.YZX: 4353>¶
- YZXr = <Order.YZXr: 4096>¶
- YZY = <Order.YZY: 4369>¶
- YZYr = <Order.YZYr: 4112>¶
- ZXY = <Order.ZXY: 8449>¶
- ZXYr = <Order.ZXYr: 0>¶
- ZXZ = <Order.ZXZ: 8465>¶
- ZXZr = <Order.ZXZr: 16>¶
- ZYX = <Order.ZYX: 8193>¶
- ZYXr = <Order.ZYXr: 256>¶
- ZYZ = <Order.ZYZ: 8209>¶
- ZYZr = <Order.ZYZr: 272>¶
- __init__(value: int) → None¶
- property name¶
- property value¶
- __init__(*args, **kwargs)¶
Overloaded function.
__init__(self: PyImath.Eulerf, order: PyImath.Eulerf.Order = <Order.XYZ: 257>) -> None
Initializes Euler angles with zero values and given order.
__init__(self: PyImath.Eulerf, vec: PyImath.V3f, order: PyImath.Eulerf.Order, layout: PyImath.Eulerf.InputLayout = <InputLayout.IJKLayout: 1>) -> None
Initializes Euler angles from the given vector, order and input data layout.
__init__(self: PyImath.Eulerf, x: float, y: float, z: float, order: PyImath.Eulerf.Order = <Order.XYZ: 257>, layout: PyImath.Eulerf.InputLayout = <InputLayout.IJKLayout: 1>) -> None
Initializes Euler angles from the three given scalars, read using the given order and layout.
__init__(self: PyImath.Eulerf, other: PyImath.Eulerf, order: PyImath.Eulerf.Order) -> None
Initializes Euler angles from another Euler angles object, using converting to the given order.
__init__(self: PyImath.Eulerf, mat: PyImath.M33f, order: PyImath.Eulerf.Order = <Order.XYZ: 257>) -> None
Initializes Euler angles from the given 3x3 matrix and order.
__init__(self: PyImath.Eulerf, mat: PyImath.M44f, order: PyImath.Eulerf.Order = <Order.XYZ: 257>) -> None
Initializes Euler angles from the given 4x4 matrix and order.
- static angleMod(arg0: float) → float¶
Converts an angle to its equivalent in [-pi, pi].
- angleOrder() → Tuple[int, int, int]¶
Returns a 3-tuple of axis indices for this Euler object.
- extract(*args, **kwargs)¶
Overloaded function.
extract(self: PyImath.Eulerf, mat: PyImath.M33f) -> None
Sets the Euler values from the given 3x3 matrix. The given matrix must not contain shear or non-uniform scaling.
extract(self: PyImath.Eulerf, mat: PyImath.M44f) -> None
Sets the Euler values from the given 4x4 matrix. The given matrix must not contain shear or non-uniform scaling.
extract(self: PyImath.Eulerf, quat: Imath_3_1::Quat<float>) -> None
Sets the Euler values from the given quaternion.
- property frameStatic¶
True if this Euler’s order is not a relative order.
- property initialAxis¶
The initial Axis of this Euler.
- property initialRepeated¶
True if this Euler’s order has a repeated axis.
- static legal(order: PyImath.Eulerf.Order) → bool¶
Returns True if the given order is a legal permutation.
- makeNear(arg0: PyImath.Eulerf) → None¶
Adjusts this Euler object so that its components differ from target by as little as possible. This method may not work correctly for Eulers with different orders, or repeated axes or relative orders.
- static nearestRotation(xyzRot: PyImath.V3f, targetXyzRot: PyImath.V3f, order: PyImath.Eulerf.Order = <Order.XYZ: 257>) → None¶
Adjusts xyzRot so that its components differ from targetXyzRot by as little as possible. Note that xyz here really means ijk, because the order must be provided.
- property order¶
The order of thie Euler object.
- property parityEven¶
True if this Euler’s order represents a right-handed coordinate system.
- set(axis: PyImath.Eulerf.Axis, relative: bool, parityEven: bool, firstRepeats: bool) → None¶
Set the order of this Euler object.
- setXYZVector(vec: PyImath.V3f) → None¶
Sets the values, reordering the input components if this Euler object is not XYZ-ordered.
- static simpleXYZRotation(xyzRot: PyImath.V3f, targetXyzRot: PyImath.V3f) → None¶
Adjusts xyzRot so that its components differ from targetXyzRot by no more than +-pi.
- toMatrix33() → PyImath.M33f¶
Converts this Euler object to a 3x3 matrix.
- toMatrix44() → PyImath.M44f¶
Converts this Euler object to a 4x4 matrix.
- toQuat() → Imath_3_1::Quat<float>¶
Converts this Euler object to a quaternion.
- toXYZVector() → PyImath.V3f¶
Converts this Euler object to a vector, reordering the angles so that the x rotation comes first, followed by y and z. In cases like XYX ordering, the repeated angle will be in the z component.
- class Imath.Frustumd¶
Bases:
pybind11_builtins.pybind11_object
- DepthToZ(depth: float, zmin: int, zmax: int) → int¶
Unprojects a depth value for this frustum to a world-space z-coordinate.
- ZToDepth(z: int, min: int, max: int) → float¶
Returns the projection of a z-coordinate to depth for this frustum.
- __init__(*args, **kwargs)¶
Overloaded function.
__init__(self: PyImath.Frustumd) -> None
Initializes a default non-orthographic frustum with clip planes at [0.1, 1000.0] and bounding planes at +-1.0.
__init__(self: PyImath.Frustumd, other: PyImath.Frustumd) -> None
Initializes a Frustum by copying the given argument.
__init__(self: PyImath.Frustumd, nearPlane: float, farPlane: float, left: float, right: float, top: float, bottom: float, ortho: bool = False) -> None
Initializes a Frustum from the given planes.
__init__(self: PyImath.Frustumd, nearPlane: float, farPlane: float, fovx: float, fovy: float, aspect: float) -> None
Initializes a Frustum from the given clip planes, field of view and aspect ratio. Exactly one of fovx and fovy must be non-zero.
- aspect() → float¶
Returns the aspect ratio of this frustum.
- bottom() → float¶
Returns the distance to the bottom plane of this frustum.
- farPlane() → float¶
Returns the distance to the far clip plane of this frustum.
- fovx() → float¶
Returns the horizontal field of view of this frustum.
- fovy() → float¶
Returns the vertical field of view of this frustum.
- left() → float¶
Returns the distance to the left plane of this frustum.
- modifyNearAndFar(nearPlane: float, farPlane: float) → None¶
Set the near and far clip planes of this frustum.
- nearPlane() → float¶
Returns the distance to the near clip plane of this frustum.
- normalizedZToDepth(z: float) → float¶
Returns the projectedof the given normalized z-coordinate by this frustum.
- orthographic() → bool¶
Returns True if this frustum is orthographic.
- projectPointToScreen(point: PyImath.V3d) → PyImath.V2d¶
Returns the projection of a world-space point to the screen-space of this frustum.
- projectionMatrix() → PyImath.M44d¶
Returns the projection matrix defined by this frustum. If ortho() returns True, this will be an orthographic matrix; otherwise it will be a perspective matrix.
- right() → float¶
Returns the distance to the right plane of this frustum.
- screenRadius(point: PyImath.V3d, radius: float) → float¶
Returns the screen-space radius of a sphere of given world-space radius when projected using this frustum.
- set(near: float, far: float, left: float, right: float, top: float, bottom: float, ortho: bool = False) → None¶
Set the planes of this Frustum.
- setOrthographic(ortho: bool) → None¶
Sets whether this frustum is orthographic.
- top() → float¶
Returns the distance to the top plane of this frustum.
- window(left: float, right: float, top: float, bottom: float) → PyImath.Frustumd¶
Given a rectangle in screen-space of this frustum, returns a new frustum whose near clip plane is that rectangle in local space.
- worldRadius(point: PyImath.V3d, radius: float) → float¶
Returns the world-space radius of a sphere of given screen-space radius when unprojected using this frustum.
- class Imath.Frustumf¶
Bases:
pybind11_builtins.pybind11_object
- DepthToZ(depth: float, zmin: int, zmax: int) → int¶
Unprojects a depth value for this frustum to a world-space z-coordinate.
- ZToDepth(z: int, min: int, max: int) → float¶
Returns the projection of a z-coordinate to depth for this frustum.
- __init__(*args, **kwargs)¶
Overloaded function.
__init__(self: PyImath.Frustumf) -> None
Initializes a default non-orthographic frustum with clip planes at [0.1, 1000.0] and bounding planes at +-1.0.
__init__(self: PyImath.Frustumf, other: PyImath.Frustumf) -> None
Initializes a Frustum by copying the given argument.
__init__(self: PyImath.Frustumf, nearPlane: float, farPlane: float, left: float, right: float, top: float, bottom: float, ortho: bool = False) -> None
Initializes a Frustum from the given planes.
__init__(self: PyImath.Frustumf, nearPlane: float, farPlane: float, fovx: float, fovy: float, aspect: float) -> None
Initializes a Frustum from the given clip planes, field of view and aspect ratio. Exactly one of fovx and fovy must be non-zero.
- aspect() → float¶
Returns the aspect ratio of this frustum.
- bottom() → float¶
Returns the distance to the bottom plane of this frustum.
- farPlane() → float¶
Returns the distance to the far clip plane of this frustum.
- fovx() → float¶
Returns the horizontal field of view of this frustum.
- fovy() → float¶
Returns the vertical field of view of this frustum.
- left() → float¶
Returns the distance to the left plane of this frustum.
- modifyNearAndFar(nearPlane: float, farPlane: float) → None¶
Set the near and far clip planes of this frustum.
- nearPlane() → float¶
Returns the distance to the near clip plane of this frustum.
- normalizedZToDepth(z: float) → float¶
Returns the projectedof the given normalized z-coordinate by this frustum.
- orthographic() → bool¶
Returns True if this frustum is orthographic.
- projectPointToScreen(point: PyImath.V3f) → PyImath.V2f¶
Returns the projection of a world-space point to the screen-space of this frustum.
- projectionMatrix() → PyImath.M44f¶
Returns the projection matrix defined by this frustum. If ortho() returns True, this will be an orthographic matrix; otherwise it will be a perspective matrix.
- right() → float¶
Returns the distance to the right plane of this frustum.
- screenRadius(point: PyImath.V3f, radius: float) → float¶
Returns the screen-space radius of a sphere of given world-space radius when projected using this frustum.
- set(near: float, far: float, left: float, right: float, top: float, bottom: float, ortho: bool = False) → None¶
Set the planes of this Frustum.
- setOrthographic(ortho: bool) → None¶
Sets whether this frustum is orthographic.
- top() → float¶
Returns the distance to the top plane of this frustum.
- window(left: float, right: float, top: float, bottom: float) → PyImath.Frustumf¶
Given a rectangle in screen-space of this frustum, returns a new frustum whose near clip plane is that rectangle in local space.
- worldRadius(point: PyImath.V3f, radius: float) → float¶
Returns the world-space radius of a sphere of given screen-space radius when unprojected using this frustum.
- class Imath.M33d¶
Bases:
pybind11_builtins.pybind11_object
- class M33dIterator¶
Bases:
pybind11_builtins.pybind11_object
Imath Iterator
- __init__(*args, **kwargs)¶
Overloaded function.
__init__(self: PyImath.M33d) -> None
Initializes an identity matrix.
__init__(self: PyImath.M33d, arg0: float, arg1: float, arg2: float, arg3: float, arg4: float, arg5: float, arg6: float, arg7: float, arg8: float) -> None
__init__(self: PyImath.M33d, arg0: PyImath.M33f) -> None
__init__(self: PyImath.M33d, arg0: PyImath.M33d) -> None
__init__(self: PyImath.M33d, arg0: object, arg1: object, arg2: object) -> None
__init__(self: PyImath.M33d, arg0: object) -> None
- static baseTypeEpsilon() → float¶
Returns a suitable epsilon value for comparing values of the underlying component type.
- static baseTypeLowest() → float¶
Returns the smallest value that can be represented by the underling component type.
- static baseTypeMax() → float¶
Returns the largest value that can be represented by the underling component type.
- static baseTypeSmallest() → float¶
Returns the smallest positive value that can be represented by the underlying component type.
- equalWithAbsError(other: PyImath.M33d, error: float) → bool¶
Returns True if this matrix equals other up to the given absolute error.
- equalWithRelError(other: PyImath.M33d, error: float) → bool¶
Returns True if this matrix equals other up to the given relative error.
- extractAndRemoveScalingAndShear(*args, **kwargs)¶
Overloaded function.
extractAndRemoveScalingAndShear(self: PyImath.M33d) -> Tuple[PyImath.V2d, float]
Removes scaling and shear from this matrix, returning their values as a 2-tuple.
extractAndRemoveScalingAndShear(self: PyImath.M33d, outScale: PyImath.V2d, outShear: float) -> bool
Remove scaling and shear from this matrix, returning their values in the given out-parameters.
- extractEuler() → float¶
Extract and return Euler angles from this matrix. This assumes that the matrix does not include shear or non-uniform scaling, but does not examine the matrix to verify this assumption. Matrices with shear or non-uniform scaling are likely to produce meaningless results. Therefore, if necessary you should first call removeScalingAndShear().
- extractSHRT(*args, **kwargs)¶
Overloaded function.
extractSHRT(self: PyImath.M33d, outScale: PyImath.V2d, outShear: float, outRotate: float, outTranslate: PyImath.V2d) -> bool
Extracts scaling, shear, rotation vector and translation from this matrix, returning their values in the corresponding out-parameters.
extractSHRT(self: PyImath.M33d) -> Tuple[PyImath.V2d, float, float, PyImath.V2d]
Returns a 4-tuple containing scale, shear, rotate, translate.
- extractScaling(*args, **kwargs)¶
Overloaded function.
extractScaling(self: PyImath.M33d) -> PyImath.V2d
Returns the scaling component of this matrix.
extractScaling(self: PyImath.M33d, arg0: PyImath.V2d) -> bool
Returns the scaling component of this matrix.
- extractScalingAndShear(*args, **kwargs)¶
Overloaded function.
extractScalingAndShear(self: PyImath.M33d) -> Tuple[PyImath.V2d, float]
Returns a 2-tuple containing the scaling and shear of this matrix.
extractScalingAndShear(self: PyImath.M33d, outScale: PyImath.V2d, outShear: float) -> bool
Extract scaling and shear from this matrix, returning them in the given out-parameters.
- gjInverse(raise: bool = False) → PyImath.M33d¶
Returns the Gauss-Jordan inverse of this matrix, handling singular matrices as in gjInvert().
- gjInvert(raise: bool = False) → PyImath.M33d¶
Invert this matrix using the slower but more precise Gauss-Jordan method. If this matrix is singular and raise is True, a RuntimeError is raised; otherwise, if raise if False, an identity matrix is set.
- identity = M33d(1, 0, 0, 0, 1, 0, 0, 0, 1)¶
- inverse(raise: bool = False) → PyImath.M33d¶
Returns the inverse of this matrix, handling singular matrices as in invert().
- invert(raise: bool = False) → PyImath.M33d¶
Invert this matrix using a faster but less precise method. If this matrix is singular and raise is True, a RuntimeError is raised; otherwise, if raise is False, an identity matrix is set.
- makeIdentity() → None¶
Sets this matrix to the identity.
- multDirMatrix(*args, **kwargs)¶
Overloaded function.
multDirMatrix(self: PyImath.M33d, v: PyImath.V2d, vOut: PyImath.V2d) -> None
Multiply the direction v by this matrix, storing the result in vOut.
multDirMatrix(self: PyImath.M33d, v: PyImath.V2d) -> PyImath.V2d
Returns the result of multiplying the direction v by this matrix.
- multVecMatrix(*args, **kwargs)¶
Overloaded function.
multVecMatrix(self: PyImath.M33d, v: PyImath.V2d, vOut: PyImath.V2d) -> None
Multiply the point v by this matrix, storing the result in vOut.
multVecMatrix(self: PyImath.M33d, v: PyImath.V2d) -> PyImath.V2d
Returns the result of multiplying the point v by this matrix.
- negate() → PyImath.M33d¶
Negates this matrix.
- removeScaling() → bool¶
Removes scaling from this matrix.
- removeScalingAndShear() → bool¶
Removes scaling and shear from this matrix.
- rotate(r: float) → PyImath.M33d¶
Cumulatively rotates this matrix by r (in radians).
- sansScaling() → PyImath.M33d¶
Returns a copy of this matrix with scaling removed.
- sansScalingAndShear() → PyImath.M33d¶
Returns a copy of this matrix with scaling and shear removed.
- scale(s: PyImath.V2d) → PyImath.M33d¶
Sets this matrix to scale by the given vector.
- setRotation(r: float) → PyImath.M33d¶
Sets the rotation component of this matrix to r (in radians).
- setScale(*args, **kwargs)¶
Overloaded function.
setScale(self: PyImath.M33d, s: float) -> PyImath.M33d
Sets this matrix to scale by the given uniform factor.
setScale(self: PyImath.M33d, s: PyImath.V2d) -> PyImath.M33d
Sets this matrix to scale by the given uniform factor
- setShear(*args, **kwargs)¶
Overloaded function.
setShear(self: PyImath.M33d, xy: float) -> PyImath.M33d
Sets the shear component of this matrix to shear both x- and y-components by xy.
setShear(self: PyImath.M33d, h: PyImath.V2d) -> PyImath.M33d
Sets the shear component of this matrix to shear x for each y-coord by h[0], and to shear y for each x-coord by h[1].
- setTranslation(t: PyImath.V2d) → PyImath.M33d¶
Sets this matrix to translate by the given vector.
- shear(*args, **kwargs)¶
Overloaded function.
shear(self: PyImath.M33d, xy: float) -> PyImath.M33d
Cumulatively applies shear xy to this matrix in both x and y directions.
shear(self: PyImath.M33d, h: PyImath.V2d) -> PyImath.M33d
Cumulatively shear this matrix in x for each y coord by given factor s[0], and shear y for each x coord by s[1].
- toMatrix44() → PyImath.M44d¶
Returns a 4x4 matrix with this matrix as its upper-left 3x3 block, and other values taken from the 4x4 identity matrix.
- translate(t: PyImath.V2d) → PyImath.M33d¶
Cumulatively translates this matrix by the given vector.
- translation() → PyImath.V2d¶
Returns the translation component of this matrix.
- transpose() → PyImath.M33d¶
Transpose this matrix.
- transposed() → PyImath.M33d¶
Returns the transpose of this matrix.
- class Imath.M33f¶
Bases:
pybind11_builtins.pybind11_object
- class M33fIterator¶
Bases:
pybind11_builtins.pybind11_object
Imath Iterator
- __init__(*args, **kwargs)¶
Overloaded function.
__init__(self: PyImath.M33f) -> None
Initializes an identity matrix.
__init__(self: PyImath.M33f, arg0: float, arg1: float, arg2: float, arg3: float, arg4: float, arg5: float, arg6: float, arg7: float, arg8: float) -> None
__init__(self: PyImath.M33f, arg0: PyImath.M33f) -> None
__init__(self: PyImath.M33f, arg0: Imath_3_1::Matrix33<double>) -> None
__init__(self: PyImath.M33f, arg0: object, arg1: object, arg2: object) -> None
__init__(self: PyImath.M33f, arg0: object) -> None
- static baseTypeEpsilon() → float¶
Returns a suitable epsilon value for comparing values of the underlying component type.
- static baseTypeLowest() → float¶
Returns the smallest value that can be represented by the underling component type.
- static baseTypeMax() → float¶
Returns the largest value that can be represented by the underling component type.
- static baseTypeSmallest() → float¶
Returns the smallest positive value that can be represented by the underlying component type.
- equalWithAbsError(other: PyImath.M33f, error: float) → bool¶
Returns True if this matrix equals other up to the given absolute error.
- equalWithRelError(other: PyImath.M33f, error: float) → bool¶
Returns True if this matrix equals other up to the given relative error.
- extractAndRemoveScalingAndShear(*args, **kwargs)¶
Overloaded function.
extractAndRemoveScalingAndShear(self: PyImath.M33f) -> Tuple[PyImath.V2f, float]
Removes scaling and shear from this matrix, returning their values as a 2-tuple.
extractAndRemoveScalingAndShear(self: PyImath.M33f, outScale: PyImath.V2f, outShear: float) -> bool
Remove scaling and shear from this matrix, returning their values in the given out-parameters.
- extractEuler() → float¶
Extract and return Euler angles from this matrix. This assumes that the matrix does not include shear or non-uniform scaling, but does not examine the matrix to verify this assumption. Matrices with shear or non-uniform scaling are likely to produce meaningless results. Therefore, if necessary you should first call removeScalingAndShear().
- extractSHRT(*args, **kwargs)¶
Overloaded function.
extractSHRT(self: PyImath.M33f, outScale: PyImath.V2f, outShear: float, outRotate: float, outTranslate: PyImath.V2f) -> bool
Extracts scaling, shear, rotation vector and translation from this matrix, returning their values in the corresponding out-parameters.
extractSHRT(self: PyImath.M33f) -> Tuple[PyImath.V2f, float, float, PyImath.V2f]
Returns a 4-tuple containing scale, shear, rotate, translate.
- extractScaling(*args, **kwargs)¶
Overloaded function.
extractScaling(self: PyImath.M33f) -> PyImath.V2f
Returns the scaling component of this matrix.
extractScaling(self: PyImath.M33f, arg0: PyImath.V2f) -> bool
Returns the scaling component of this matrix.
- extractScalingAndShear(*args, **kwargs)¶
Overloaded function.
extractScalingAndShear(self: PyImath.M33f) -> Tuple[PyImath.V2f, float]
Returns a 2-tuple containing the scaling and shear of this matrix.
extractScalingAndShear(self: PyImath.M33f, outScale: PyImath.V2f, outShear: float) -> bool
Extract scaling and shear from this matrix, returning them in the given out-parameters.
- gjInverse(raise: bool = False) → PyImath.M33f¶
Returns the Gauss-Jordan inverse of this matrix, handling singular matrices as in gjInvert().
- gjInvert(raise: bool = False) → PyImath.M33f¶
Invert this matrix using the slower but more precise Gauss-Jordan method. If this matrix is singular and raise is True, a RuntimeError is raised; otherwise, if raise if False, an identity matrix is set.
- identity = M33f(1, 0, 0, 0, 1, 0, 0, 0, 1)¶
- inverse(raise: bool = False) → PyImath.M33f¶
Returns the inverse of this matrix, handling singular matrices as in invert().
- invert(raise: bool = False) → PyImath.M33f¶
Invert this matrix using a faster but less precise method. If this matrix is singular and raise is True, a RuntimeError is raised; otherwise, if raise is False, an identity matrix is set.
- makeIdentity() → None¶
Sets this matrix to the identity.
- multDirMatrix(*args, **kwargs)¶
Overloaded function.
multDirMatrix(self: PyImath.M33f, v: PyImath.V2f, vOut: PyImath.V2f) -> None
Multiply the direction v by this matrix, storing the result in vOut.
multDirMatrix(self: PyImath.M33f, v: PyImath.V2f) -> PyImath.V2f
Returns the result of multiplying the direction v by this matrix.
- multVecMatrix(*args, **kwargs)¶
Overloaded function.
multVecMatrix(self: PyImath.M33f, v: PyImath.V2f, vOut: PyImath.V2f) -> None
Multiply the point v by this matrix, storing the result in vOut.
multVecMatrix(self: PyImath.M33f, v: PyImath.V2f) -> PyImath.V2f
Returns the result of multiplying the point v by this matrix.
- negate() → PyImath.M33f¶
Negates this matrix.
- removeScaling() → bool¶
Removes scaling from this matrix.
- removeScalingAndShear() → bool¶
Removes scaling and shear from this matrix.
- rotate(r: float) → PyImath.M33f¶
Cumulatively rotates this matrix by r (in radians).
- sansScaling() → PyImath.M33f¶
Returns a copy of this matrix with scaling removed.
- sansScalingAndShear() → PyImath.M33f¶
Returns a copy of this matrix with scaling and shear removed.
- scale(s: PyImath.V2f) → PyImath.M33f¶
Sets this matrix to scale by the given vector.
- setRotation(r: float) → PyImath.M33f¶
Sets the rotation component of this matrix to r (in radians).
- setScale(*args, **kwargs)¶
Overloaded function.
setScale(self: PyImath.M33f, s: float) -> PyImath.M33f
Sets this matrix to scale by the given uniform factor.
setScale(self: PyImath.M33f, s: PyImath.V2f) -> PyImath.M33f
Sets this matrix to scale by the given uniform factor
- setShear(*args, **kwargs)¶
Overloaded function.
setShear(self: PyImath.M33f, xy: float) -> PyImath.M33f
Sets the shear component of this matrix to shear both x- and y-components by xy.
setShear(self: PyImath.M33f, h: PyImath.V2f) -> PyImath.M33f
Sets the shear component of this matrix to shear x for each y-coord by h[0], and to shear y for each x-coord by h[1].
- setTranslation(t: PyImath.V2f) → PyImath.M33f¶
Sets this matrix to translate by the given vector.
- shear(*args, **kwargs)¶
Overloaded function.
shear(self: PyImath.M33f, xy: float) -> PyImath.M33f
Cumulatively applies shear xy to this matrix in both x and y directions.
shear(self: PyImath.M33f, h: PyImath.V2f) -> PyImath.M33f
Cumulatively shear this matrix in x for each y coord by given factor s[0], and shear y for each x coord by s[1].
- toMatrix44() → PyImath.M44f¶
Returns a 4x4 matrix with this matrix as its upper-left 3x3 block, and other values taken from the 4x4 identity matrix.
- translate(t: PyImath.V2f) → PyImath.M33f¶
Cumulatively translates this matrix by the given vector.
- translation() → PyImath.V2f¶
Returns the translation component of this matrix.
- transpose() → PyImath.M33f¶
Transpose this matrix.
- transposed() → PyImath.M33f¶
Returns the transpose of this matrix.
- class Imath.M44d¶
Bases:
pybind11_builtins.pybind11_object
- class M44dIterator¶
Bases:
pybind11_builtins.pybind11_object
Imath Iterator
- __init__(*args, **kwargs)¶
Overloaded function.
__init__(self: PyImath.M44d) -> None
Initializes an identity matrix.
__init__(self: PyImath.M44d, mat: Imath_3_1::Matrix33<double>, vec: PyImath.V3d) -> None
Initializes a 4x4 matrix from a 3x3 matrix and column vector.
__init__(self: PyImath.M44d, arg0: PyImath.M44f) -> None
__init__(self: PyImath.M44d, arg0: PyImath.M44d) -> None
__init__(self: PyImath.M44d, arg0: float, arg1: float, arg2: float, arg3: float, arg4: float, arg5: float, arg6: float, arg7: float, arg8: float, arg9: float, arg10: float, arg11: float, arg12: float, arg13: float, arg14: float, arg15: float) -> None
__init__(self: PyImath.M44d, col0: object, col1: object, col2: object, col3: object) -> None
Initializes a 4x4 from four iterables, viewed as column vectors.
__init__(self: PyImath.M44d, iter: object) -> None
Initializes a 4x4 matrix from an iterable.
- static alignZAxisWithTargetDir(arg0: PyImath.V3d, arg1: PyImath.V3d) → PyImath.M44d¶
Returns a matrix that rotates the z-axis so that it points towards targetDir. You must also specify the up vector upDir.
- The following degenerate cases are handled:
when toDir and upDir are parallel or opposite;
when any of the given vectors have zero length.
- static baseTypeEpsilon() → float¶
Returns a suitable epsilon value for comparing values of the underlying component type.
- static baseTypeLowest() → float¶
Returns the smallest value that can be represented by the underling component type.
- static baseTypeMax() → float¶
Returns the largest value that can be represented by the underling component type.
- static baseTypeSmallest() → float¶
Returns the smallest positive value that can be represented by the underlying component type.
- equalWithAbsError(other: PyImath.M44d, error: float) → bool¶
Returns True if this matrix equals other up to the given absolute error.
- equalWithRelError(other: PyImath.M44d, error: float) → bool¶
Returns True if this matrix equals other up to the given relative error.
- extractAndRemoveScalingAndShear(*args, **kwargs)¶
Overloaded function.
extractAndRemoveScalingAndShear(self: PyImath.M44d) -> Tuple[PyImath.V3d, PyImath.V3d]
Removes scaling and shear from this matrix, returning their values as a 2-tuple.
extractAndRemoveScalingAndShear(self: PyImath.M44d, outScale: PyImath.V3d, outShear: PyImath.V3d) -> bool
Removes scaling and shear from this matrix, returning their values in out-parameters outScale and outShear.
- extractEulerXYZ(*args, **kwargs)¶
Overloaded function.
extractEulerXYZ(self: PyImath.M44d, outAngles: PyImath.V3d) -> None
Extracts XYZ Euler angles from this matrix to outAngles. This function assumes that the matrix does not include shear or non-uniform scaling, but it does not examine the matrix to verify this assumption. Matrices with shear or non-uniform scaling are likely to produce meaningless results. Therefore, if necessary you should first call removeScalingAndShear().
extractEulerXYZ(self: PyImath.M44d) -> PyImath.V3d
Returns the XYZ Euler angles from this matrix.
- extractEulerZYX(*args, **kwargs)¶
Overloaded function.
extractEulerZYX(self: PyImath.M44d, outAngles: PyImath.V3d) -> None
As extractEulerXYZ but with reversed rotation order.
extractEulerZYX(self: PyImath.M44d) -> PyImath.V3d
As extractEulerXYZ but with reserved rotation order.
- extractQuat() → Imath_3_1::Quat<double>¶
Returns a quaternion extracted from this matrix. See extractEulerXYZ() for assumptions.
- extractSHRT(*args, **kwargs)¶
Overloaded function.
extractSHRT(self: PyImath.M44d, outScale: PyImath.V3d, outShear: PyImath.V3d, outRotate: PyImath.V3d, outTranslate: PyImath.V3d, order: Imath_3_1::Euler<double>::Order) -> bool
Extracts scaling, shearing, rotation vector, and translation to the corresponding out-parameters.
extractSHRT(self: PyImath.M44d, outScale: PyImath.V3d, outShear: PyImath.V3d, outRotate: Imath_3_1::Euler<double>, outTranslate: PyImath.V3d) -> bool
Extracts scaling, shearing, Euler angles of the given order, and translation to the corresponding out-parameters.
extractSHRT(self: PyImath.M44d) -> Tuple[PyImath.V3d, PyImath.V3d, Imath_3_1::Euler<double>, PyImath.V3d]
Returns a 4-tuple containing scale, shear, rotate, translate.
extractSHRT(self: PyImath.M44d, order: Imath_3_1::Euler<double>::Order) -> Tuple[PyImath.V3d, PyImath.V3d, PyImath.V3d, PyImath.V3d]
Returns a 4-tuple containing scale, shear, rotate, translate.
extractSHRT(self: PyImath.M44d, outScale: PyImath.V3d, outShear: PyImath.V3d, outRotate: PyImath.V3d, outTranslate: PyImath.V3d) -> bool
Extracts scaling, shearing, rotation vector and translation to the corresponding out-parameters.
extractSHRT(self: PyImath.M44d, outScale: PyImath.V3d, outShear: PyImath.V3d, outRotate: Imath_3_1::Euler<double>, outTranslate: PyImath.V3d) -> bool
Extracts scaling, shearing, Euler angles of default order, and translation to the corresponding out-parameters.
- extractScaling(*args, **kwargs)¶
Overloaded function.
extractScaling(self: PyImath.M44d) -> PyImath.V3d
Returns the scaling component of this matrix.
extractScaling(self: PyImath.M44d, arg0: PyImath.V3d) -> bool
Returns the scaling component of this matrix.
- extractScalingAndShear(*args, **kwargs)¶
Overloaded function.
extractScalingAndShear(self: PyImath.M44d) -> Tuple[PyImath.V3d, PyImath.V3d]
Returns a 2-tuple containing the scaling and shear of this matrix.
extractScalingAndShear(self: PyImath.M44d, outScale: PyImath.V3d, outShear: PyImath.V3d) -> bool
Returns the scaling and shear of this matrix in out-parameters outScale and outShear
- gjInverse(raise: bool = False) → PyImath.M44d¶
Returns the Gauss-Jordan inverse of this matrix, handling singular matrices as in gjInvert().
- gjInvert(raise: bool = False) → PyImath.M44d¶
Invert this matrix using the slower but more precise Gauss-Jordan method. If this matrix is singular and raise is True, a RuntimeError is raised; otherwise, if raise if False, an identity matrix is set.
- identity = M44d(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1)¶
- inverse(raise: bool = False) → PyImath.M44d¶
Returns the inverse of this matrix, handling singular matrices as in invert().
- invert(raise: bool = False) → PyImath.M44d¶
Invert this matrix using a faster but less precise method. If this matrix is singular and raise is True, a RuntimeError is raised; otherwise, if raise is False, an identity matrix is set.
- makeIdentity() → None¶
Sets this matrix to the identity.
- multDirMatrix(*args, **kwargs)¶
Overloaded function.
multDirMatrix(self: PyImath.M44d, v: PyImath.V3d, vOut: PyImath.V3d) -> None
Multiply the direction v by this matrix, storing the result in vOut.
multDirMatrix(self: PyImath.M44d, v: PyImath.V3d) -> PyImath.V3d
Returns the result of multiplying the direction v by this matrix.
- multVecMatrix(*args, **kwargs)¶
Overloaded function.
multVecMatrix(self: PyImath.M44d, v: PyImath.V3d, vOut: PyImath.V3d) -> None
Multiply the point v by this matrix, storing the result in vOut.
multVecMatrix(self: PyImath.M44d, v: PyImath.V3d) -> PyImath.V3d
Returns the result of multiplying the point v by this matrix.
- static multiply(*args, **kwargs)¶
Overloaded function.
multiply(a: PyImath.M44d, b: PyImath.M44d, out: PyImath.M44d) -> None
Multiplies matrix a by matrix b and stores the result in out.
multiply(a: PyImath.M44d, b: PyImath.M44d) -> PyImath.M44d
Multiplies matrix a with matrix b and returns the result.
- negate() → PyImath.M44d¶
Negates this matrix.
- removeScaling() → bool¶
Removes scaling from this matrix.
- removeScalingAndShear() → bool¶
Removes scaling and shear from this matrix.
- rotate(angles: PyImath.V3d) → PyImath.M44d¶
Cumulatively rotate this matrix by the given XYZ Euler angles (in radians).
- static rotationMatrix(fromDir: PyImath.V3d, toDir: PyImath.V3d) → PyImath.M44d¶
Returns a matrix that rotates fromDir to toDir.
- static rotationMatrixWithUpDir(fromDir: PyImath.V3d, toDir: PyImath.V3d, upDir: PyImath.V3d) → PyImath.M44d¶
Returns a matrix that rotates fromDir so that it points towards toDir, with a given upDir.
- sansScaling() → PyImath.M44d¶
Returns a copy of this matrix with scaling removed.
- sansScalingAndShear() → PyImath.M44d¶
Returns a copy of this matrix with scaling and shear removed.
- scale(s: PyImath.V3d) → PyImath.M44d¶
Sets this matrix to scale by the given vector.
- setAxisAngle(axis: PyImath.V3d, angle: float) → PyImath.M44d¶
Sets the rotation component of this matrix using the given axis and angle (in radians).
- setEulerAngles(angles: PyImath.V3d) → PyImath.M44d¶
Sets the rotation component of this matrix to the given XYZ Euler angles (in radians).
- setScale(*args, **kwargs)¶
Overloaded function.
setScale(self: PyImath.M44d, s: float) -> PyImath.M44d
Sets this matrix to scale by the given uniform factor.
setScale(self: PyImath.M44d, s: PyImath.V3d) -> PyImath.M44d
Sets this matrix to scale by the given uniform factor
- setShear(h: PyImath.V3d) → PyImath.M44d¶
- Sets the shear component of this matrix to the given vector. The resulting matrix will:
shear x for each y-coord by a factor of h[0];
shear x for each z-coord by a factor of h[1];
shear y for each z-coord by a factor of h[2].
- setTranslation(t: PyImath.V3d) → PyImath.M44d¶
Sets this matrix to translate by the given vector.
- shear(arg0: PyImath.V3d) → PyImath.M44d¶
- Precomposes this matrix with a shearing matrix that will:
shear x for each y coord. by a factor of h[0];
shear x for each z coord. by a factor of h[1];
shear y for each z coord. by a factor of h[2].
- toMatrix33() → Imath_3_1::Matrix33<double>¶
Returns the upper-left 3x3 matrix.
- translate(t: PyImath.V3d) → PyImath.M44d¶
Cumulatively translates this matrix by the given vector.
- translation() → PyImath.V3d¶
Returns the translation component of this matrix.
- transpose() → PyImath.M44d¶
Transpose this matrix.
- transposed() → PyImath.M44d¶
Returns the transpose of this matrix.
- class Imath.M44f¶
Bases:
pybind11_builtins.pybind11_object
- class M44fIterator¶
Bases:
pybind11_builtins.pybind11_object
Imath Iterator
- __init__(*args, **kwargs)¶
Overloaded function.
__init__(self: PyImath.M44f) -> None
Initializes an identity matrix.
__init__(self: PyImath.M44f, mat: Imath_3_1::Matrix33<float>, vec: PyImath.V3f) -> None
Initializes a 4x4 matrix from a 3x3 matrix and column vector.
__init__(self: PyImath.M44f, arg0: PyImath.M44f) -> None
__init__(self: PyImath.M44f, arg0: Imath_3_1::Matrix44<double>) -> None
__init__(self: PyImath.M44f, arg0: float, arg1: float, arg2: float, arg3: float, arg4: float, arg5: float, arg6: float, arg7: float, arg8: float, arg9: float, arg10: float, arg11: float, arg12: float, arg13: float, arg14: float, arg15: float) -> None
__init__(self: PyImath.M44f, col0: object, col1: object, col2: object, col3: object) -> None
Initializes a 4x4 from four iterables, viewed as column vectors.
__init__(self: PyImath.M44f, iter: object) -> None
Initializes a 4x4 matrix from an iterable.
- static alignZAxisWithTargetDir(arg0: PyImath.V3f, arg1: PyImath.V3f) → PyImath.M44f¶
Returns a matrix that rotates the z-axis so that it points towards targetDir. You must also specify the up vector upDir.
- The following degenerate cases are handled:
when toDir and upDir are parallel or opposite;
when any of the given vectors have zero length.
- static baseTypeEpsilon() → float¶
Returns a suitable epsilon value for comparing values of the underlying component type.
- static baseTypeLowest() → float¶
Returns the smallest value that can be represented by the underling component type.
- static baseTypeMax() → float¶
Returns the largest value that can be represented by the underling component type.
- static baseTypeSmallest() → float¶
Returns the smallest positive value that can be represented by the underlying component type.
- equalWithAbsError(other: PyImath.M44f, error: float) → bool¶
Returns True if this matrix equals other up to the given absolute error.
- equalWithRelError(other: PyImath.M44f, error: float) → bool¶
Returns True if this matrix equals other up to the given relative error.
- extractAndRemoveScalingAndShear(*args, **kwargs)¶
Overloaded function.
extractAndRemoveScalingAndShear(self: PyImath.M44f) -> Tuple[PyImath.V3f, PyImath.V3f]
Removes scaling and shear from this matrix, returning their values as a 2-tuple.
extractAndRemoveScalingAndShear(self: PyImath.M44f, outScale: PyImath.V3f, outShear: PyImath.V3f) -> bool
Removes scaling and shear from this matrix, returning their values in out-parameters outScale and outShear.
- extractEulerXYZ(*args, **kwargs)¶
Overloaded function.
extractEulerXYZ(self: PyImath.M44f, outAngles: PyImath.V3f) -> None
Extracts XYZ Euler angles from this matrix to outAngles. This function assumes that the matrix does not include shear or non-uniform scaling, but it does not examine the matrix to verify this assumption. Matrices with shear or non-uniform scaling are likely to produce meaningless results. Therefore, if necessary you should first call removeScalingAndShear().
extractEulerXYZ(self: PyImath.M44f) -> PyImath.V3f
Returns the XYZ Euler angles from this matrix.
- extractEulerZYX(*args, **kwargs)¶
Overloaded function.
extractEulerZYX(self: PyImath.M44f, outAngles: PyImath.V3f) -> None
As extractEulerXYZ but with reversed rotation order.
extractEulerZYX(self: PyImath.M44f) -> PyImath.V3f
As extractEulerXYZ but with reserved rotation order.
- extractQuat() → Imath_3_1::Quat<float>¶
Returns a quaternion extracted from this matrix. See extractEulerXYZ() for assumptions.
- extractSHRT(*args, **kwargs)¶
Overloaded function.
extractSHRT(self: PyImath.M44f, outScale: PyImath.V3f, outShear: PyImath.V3f, outRotate: PyImath.V3f, outTranslate: PyImath.V3f, order: Imath_3_1::Euler<float>::Order) -> bool
Extracts scaling, shearing, rotation vector, and translation to the corresponding out-parameters.
extractSHRT(self: PyImath.M44f, outScale: PyImath.V3f, outShear: PyImath.V3f, outRotate: Imath_3_1::Euler<float>, outTranslate: PyImath.V3f) -> bool
Extracts scaling, shearing, Euler angles of the given order, and translation to the corresponding out-parameters.
extractSHRT(self: PyImath.M44f) -> Tuple[PyImath.V3f, PyImath.V3f, Imath_3_1::Euler<float>, PyImath.V3f]
Returns a 4-tuple containing scale, shear, rotate, translate.
extractSHRT(self: PyImath.M44f, order: Imath_3_1::Euler<float>::Order) -> Tuple[PyImath.V3f, PyImath.V3f, PyImath.V3f, PyImath.V3f]
Returns a 4-tuple containing scale, shear, rotate, translate.
extractSHRT(self: PyImath.M44f, outScale: PyImath.V3f, outShear: PyImath.V3f, outRotate: PyImath.V3f, outTranslate: PyImath.V3f) -> bool
Extracts scaling, shearing, rotation vector and translation to the corresponding out-parameters.
extractSHRT(self: PyImath.M44f, outScale: PyImath.V3f, outShear: PyImath.V3f, outRotate: Imath_3_1::Euler<float>, outTranslate: PyImath.V3f) -> bool
Extracts scaling, shearing, Euler angles of default order, and translation to the corresponding out-parameters.
- extractScaling(*args, **kwargs)¶
Overloaded function.
extractScaling(self: PyImath.M44f) -> PyImath.V3f
Returns the scaling component of this matrix.
extractScaling(self: PyImath.M44f, arg0: PyImath.V3f) -> bool
Returns the scaling component of this matrix.
- extractScalingAndShear(*args, **kwargs)¶
Overloaded function.
extractScalingAndShear(self: PyImath.M44f) -> Tuple[PyImath.V3f, PyImath.V3f]
Returns a 2-tuple containing the scaling and shear of this matrix.
extractScalingAndShear(self: PyImath.M44f, outScale: PyImath.V3f, outShear: PyImath.V3f) -> bool
Returns the scaling and shear of this matrix in out-parameters outScale and outShear
- gjInverse(raise: bool = False) → PyImath.M44f¶
Returns the Gauss-Jordan inverse of this matrix, handling singular matrices as in gjInvert().
- gjInvert(raise: bool = False) → PyImath.M44f¶
Invert this matrix using the slower but more precise Gauss-Jordan method. If this matrix is singular and raise is True, a RuntimeError is raised; otherwise, if raise if False, an identity matrix is set.
- identity = M44f(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1)¶
- inverse(raise: bool = False) → PyImath.M44f¶
Returns the inverse of this matrix, handling singular matrices as in invert().
- invert(raise: bool = False) → PyImath.M44f¶
Invert this matrix using a faster but less precise method. If this matrix is singular and raise is True, a RuntimeError is raised; otherwise, if raise is False, an identity matrix is set.
- makeIdentity() → None¶
Sets this matrix to the identity.
- multDirMatrix(*args, **kwargs)¶
Overloaded function.
multDirMatrix(self: PyImath.M44f, v: PyImath.V3f, vOut: PyImath.V3f) -> None
Multiply the direction v by this matrix, storing the result in vOut.
multDirMatrix(self: PyImath.M44f, v: PyImath.V3f) -> PyImath.V3f
Returns the result of multiplying the direction v by this matrix.
- multVecMatrix(*args, **kwargs)¶
Overloaded function.
multVecMatrix(self: PyImath.M44f, v: PyImath.V3f, vOut: PyImath.V3f) -> None
Multiply the point v by this matrix, storing the result in vOut.
multVecMatrix(self: PyImath.M44f, v: PyImath.V3f) -> PyImath.V3f
Returns the result of multiplying the point v by this matrix.
- static multiply(*args, **kwargs)¶
Overloaded function.
multiply(a: PyImath.M44f, b: PyImath.M44f, out: PyImath.M44f) -> None
Multiplies matrix a by matrix b and stores the result in out.
multiply(a: PyImath.M44f, b: PyImath.M44f) -> PyImath.M44f
Multiplies matrix a with matrix b and returns the result.
- negate() → PyImath.M44f¶
Negates this matrix.
- removeScaling() → bool¶
Removes scaling from this matrix.
- removeScalingAndShear() → bool¶
Removes scaling and shear from this matrix.
- rotate(angles: PyImath.V3f) → PyImath.M44f¶
Cumulatively rotate this matrix by the given XYZ Euler angles (in radians).
- static rotationMatrix(fromDir: PyImath.V3f, toDir: PyImath.V3f) → PyImath.M44f¶
Returns a matrix that rotates fromDir to toDir.
- static rotationMatrixWithUpDir(fromDir: PyImath.V3f, toDir: PyImath.V3f, upDir: PyImath.V3f) → PyImath.M44f¶
Returns a matrix that rotates fromDir so that it points towards toDir, with a given upDir.
- sansScaling() → PyImath.M44f¶
Returns a copy of this matrix with scaling removed.
- sansScalingAndShear() → PyImath.M44f¶
Returns a copy of this matrix with scaling and shear removed.
- scale(s: PyImath.V3f) → PyImath.M44f¶
Sets this matrix to scale by the given vector.
- setAxisAngle(axis: PyImath.V3f, angle: float) → PyImath.M44f¶
Sets the rotation component of this matrix using the given axis and angle (in radians).
- setEulerAngles(angles: PyImath.V3f) → PyImath.M44f¶
Sets the rotation component of this matrix to the given XYZ Euler angles (in radians).
- setScale(*args, **kwargs)¶
Overloaded function.
setScale(self: PyImath.M44f, s: float) -> PyImath.M44f
Sets this matrix to scale by the given uniform factor.
setScale(self: PyImath.M44f, s: PyImath.V3f) -> PyImath.M44f
Sets this matrix to scale by the given uniform factor
- setShear(h: PyImath.V3f) → PyImath.M44f¶
- Sets the shear component of this matrix to the given vector. The resulting matrix will:
shear x for each y-coord by a factor of h[0];
shear x for each z-coord by a factor of h[1];
shear y for each z-coord by a factor of h[2].
- setTranslation(t: PyImath.V3f) → PyImath.M44f¶
Sets this matrix to translate by the given vector.
- shear(arg0: PyImath.V3f) → PyImath.M44f¶
- Precomposes this matrix with a shearing matrix that will:
shear x for each y coord. by a factor of h[0];
shear x for each z coord. by a factor of h[1];
shear y for each z coord. by a factor of h[2].
- toMatrix33() → Imath_3_1::Matrix33<float>¶
Returns the upper-left 3x3 matrix.
- translate(t: PyImath.V3f) → PyImath.M44f¶
Cumulatively translates this matrix by the given vector.
- translation() → PyImath.V3f¶
Returns the translation component of this matrix.
- transpose() → PyImath.M44f¶
Transpose this matrix.
- transposed() → PyImath.M44f¶
Returns the transpose of this matrix.
- class Imath.Quatd¶
Bases:
pybind11_builtins.pybind11_object
- class QuatdIterator¶
Bases:
pybind11_builtins.pybind11_object
Imath Iterator
- __init__(*args, **kwargs)¶
Overloaded function.
__init__(self: PyImath.Quatd) -> None
Initializes a quaternion to the real unit 1.0.
__init__(self: PyImath.Quatd, r: float, vx: float, vy: float, vz: float) -> None
Initializes a quaternion from the given scalars.
__init__(self: PyImath.Quatd, r: float, v: PyImath.V3d) -> None
Initializes a quaternion from a scalar and vector.
__init__(self: PyImath.Quatd, iter: object) -> None
Initializes a quaternion from an iterable.
- property angle¶
- property axis¶
- exp() → PyImath.Quatd¶
Returns the exponential of this quaternion.
- identity = Quatd(1, 0, 0, 0)¶
- intermediate(qa: PyImath.Quatd, qb: PyImath.Quatd) → PyImath.Quatd¶
Computes the intermediate of self with respect to qa and qb.
From advanced Animation and Rendering Techniques by Watt and Watt, Page 366: computing the inner quadrangle points (qa and qb) to guarantee tangent continuity.
- inverse() → PyImath.Quatd¶
Returns the inverse of this quaternion.
- invert() → PyImath.Quatd¶
Invert this quaternion.
- length() → float¶
Returns the length of this quaternion.
- log() → PyImath.Quatd¶
Returns the logarithm of this quaternion.
- normalize() → PyImath.Quatd¶
Normalize thie quaternion.
- normalized() → PyImath.Quatd¶
Returns a copy of this quaternion that has been normalized.
- property r¶
The real part of this quaternion.
- setAxisAngle(axis: PyImath.V3d, angle: float) → PyImath.Quatd¶
Sets this quaternion from the given axis and angle.
- setRotation(fromDir: PyImath.V3d, toDir: PyImath.V3d) → PyImath.Quatd¶
Sets this quaternion so that it rotates from fromDir to toDir.
- slerp(q2: PyImath.Quatd, t: float) → PyImath.Quatd¶
Computes the spherical linear interpolation of this quaternion and q2 by factor t.
NOTE: Assumes self and q2 are normalized and that 0 <= t <= 1.
This method does not interpolate along the shortest arc between self and q2. If you desire interpolation along the shortest arc, then consider flipping the second quaternion explicitly before calling slerp. The implementation of squad() depends on a slerp() that interpolates as is, without the automatic flipping.
- spline(q1: PyImath.Quatd, q2: PyImath.Quatd, q3: PyImath.Quatd, t: float) → PyImath.Quatd¶
Computes the spherical cubic spline iterpolation of self with respect to q1, q2 and q3 at parameter t.
Spherical Cubic Spline Interpolation - from Advanced Animation and Rendering Techniques by Watt and Watt, Page 366: A spherical curve is constructed using three spherical linear interpolations of a quadrangle of unit quaternions: q1, qa, qb, q2. Given a set of quaternion keys: self, q1, q2, q3, this routine does the interpolation between q1 and q2 by constructing two intermediate quaternions: qa and qb. The qa and qb are computed by the intermediate function to guarantee continuityof tangents across adjacent cubic segments. The qa represents in-tangent for q1 and the qb represents the out-tangent for q2.
The q1 q2 is the cubic segment being interpolated. The self is from the previous adjacent segment and q3 is from the next adjacent segment. The self and q3 are used in computing qa and qb.
- squad(qa: PyImath.Quatd, qb: PyImath.Quatd, q2: PyImath.Quatd, t: float) → PyImath.Quatd¶
Computes the spherical quadrangle interpolation of self with respect to qa, qb and q2.
Spherical Quadrangle Interpolation - from Advanced Animation and Rendering Techniques by Watt and Watt, Page 366: It constructs a spherical cubic interpolation as a series of three spherical linear interpolations of a quadrangle of unit quaternions.
- toMatrix33() → PyImath.M33d¶
Convert this quaternion to a 3x3 rotation matrix.
- toMatrix44() → PyImath.M44d¶
Convert this quaternion to a 4x4 rotation matrix.
- property v¶
The imaginary part of this quaternion.
- class Imath.Quatf¶
Bases:
pybind11_builtins.pybind11_object
- class QuatfIterator¶
Bases:
pybind11_builtins.pybind11_object
Imath Iterator
- __init__(*args, **kwargs)¶
Overloaded function.
__init__(self: PyImath.Quatf) -> None
Initializes a quaternion to the real unit 1.0.
__init__(self: PyImath.Quatf, r: float, vx: float, vy: float, vz: float) -> None
Initializes a quaternion from the given scalars.
__init__(self: PyImath.Quatf, r: float, v: PyImath.V3f) -> None
Initializes a quaternion from a scalar and vector.
__init__(self: PyImath.Quatf, iter: object) -> None
Initializes a quaternion from an iterable.
- property angle¶
- property axis¶
- exp() → PyImath.Quatf¶
Returns the exponential of this quaternion.
- identity = Quatf(1, 0, 0, 0)¶
- intermediate(qa: PyImath.Quatf, qb: PyImath.Quatf) → PyImath.Quatf¶
Computes the intermediate of self with respect to qa and qb.
From advanced Animation and Rendering Techniques by Watt and Watt, Page 366: computing the inner quadrangle points (qa and qb) to guarantee tangent continuity.
- inverse() → PyImath.Quatf¶
Returns the inverse of this quaternion.
- invert() → PyImath.Quatf¶
Invert this quaternion.
- length() → float¶
Returns the length of this quaternion.
- log() → PyImath.Quatf¶
Returns the logarithm of this quaternion.
- normalize() → PyImath.Quatf¶
Normalize thie quaternion.
- normalized() → PyImath.Quatf¶
Returns a copy of this quaternion that has been normalized.
- property r¶
The real part of this quaternion.
- setAxisAngle(axis: PyImath.V3f, angle: float) → PyImath.Quatf¶
Sets this quaternion from the given axis and angle.
- setRotation(fromDir: PyImath.V3f, toDir: PyImath.V3f) → PyImath.Quatf¶
Sets this quaternion so that it rotates from fromDir to toDir.
- slerp(q2: PyImath.Quatf, t: float) → PyImath.Quatf¶
Computes the spherical linear interpolation of this quaternion and q2 by factor t.
NOTE: Assumes self and q2 are normalized and that 0 <= t <= 1.
This method does not interpolate along the shortest arc between self and q2. If you desire interpolation along the shortest arc, then consider flipping the second quaternion explicitly before calling slerp. The implementation of squad() depends on a slerp() that interpolates as is, without the automatic flipping.
- spline(q1: PyImath.Quatf, q2: PyImath.Quatf, q3: PyImath.Quatf, t: float) → PyImath.Quatf¶
Computes the spherical cubic spline iterpolation of self with respect to q1, q2 and q3 at parameter t.
Spherical Cubic Spline Interpolation - from Advanced Animation and Rendering Techniques by Watt and Watt, Page 366: A spherical curve is constructed using three spherical linear interpolations of a quadrangle of unit quaternions: q1, qa, qb, q2. Given a set of quaternion keys: self, q1, q2, q3, this routine does the interpolation between q1 and q2 by constructing two intermediate quaternions: qa and qb. The qa and qb are computed by the intermediate function to guarantee continuityof tangents across adjacent cubic segments. The qa represents in-tangent for q1 and the qb represents the out-tangent for q2.
The q1 q2 is the cubic segment being interpolated. The self is from the previous adjacent segment and q3 is from the next adjacent segment. The self and q3 are used in computing qa and qb.
- squad(qa: PyImath.Quatf, qb: PyImath.Quatf, q2: PyImath.Quatf, t: float) → PyImath.Quatf¶
Computes the spherical quadrangle interpolation of self with respect to qa, qb and q2.
Spherical Quadrangle Interpolation - from Advanced Animation and Rendering Techniques by Watt and Watt, Page 366: It constructs a spherical cubic interpolation as a series of three spherical linear interpolations of a quadrangle of unit quaternions.
- toMatrix33() → PyImath.M33f¶
Convert this quaternion to a 3x3 rotation matrix.
- toMatrix44() → PyImath.M44f¶
Convert this quaternion to a 4x4 rotation matrix.
- property v¶
The imaginary part of this quaternion.
- class Imath.V2d¶
Bases:
pybind11_builtins.pybind11_object
- class V2dIterator¶
Bases:
pybind11_builtins.pybind11_object
Imath Iterator
- __init__(*args, **kwargs)¶
Overloaded function.
__init__(self: PyImath.V2d) -> None
Initializes a vector with zero values.
__init__(self: PyImath.V2d, value: float) -> None
Initializes a vector with all components set to the given value.
__init__(self: PyImath.V2d, iter: object) -> None
Initializes a vector from an iterable.
__init__(self: PyImath.V2d, x: float, y: float) -> None
Initializes a vector from the given x and y components.
__init__(self: PyImath.V2d, arg0: PyImath.V2d) -> None
__init__(self: PyImath.V2d, arg0: Imath_3_1::Vec2<float>) -> None
__init__(self: PyImath.V2d, arg0: Imath_3_1::Vec2<int>) -> None
__init__(self: PyImath.V2d, arg0: Imath_3_1::Vec2<short>) -> None
- static baseTypeEpsilon() → float¶
Returns an epsilon value suitable for comparing values of the underlying component type.
- static baseTypeLowest() → float¶
Returns the smallest value that can be represented by the underlying component type.
- static baseTypeMax() → float¶
Returns the largest value that can be represented by the underlying component type.
- static baseTypeSmallest() → float¶
Returns the smallest positive value that can be represented by the underlying component type.
- closestVertex(v1: PyImath.V2d, v2: PyImath.V2d, p: PyImath.V2d) → PyImath.V2d¶
Find the vertex of triangle (v0, v1, v2), which is closest to point p.
- cross(other: PyImath.V2d) → float¶
Returns the cross product of this vector and other.
- static dimensions() → int¶
Returns the number of components in this vector type.
- dot(other: PyImath.V2d) → float¶
Returns the dot product of this vector and other.
- equalWithAbsError(other: PyImath.V2d, error: float) → bool¶
Returns True if this vector equals other, up to the given absolute error.
- equalWithRelError(other: PyImath.V2d, error: float) → bool¶
Returns True if this vector equals other, up to the given relative error.
- length() → float¶
Computes the length of this vector.
- length2() → float¶
Computes the squared length of this vector.
- negate() → PyImath.V2d¶
Negate this vector.
- normalize() → PyImath.V2d¶
Normalize this vector. Sets a null vector if length is zero.
- normalizeExc() → PyImath.V2d¶
Normalize this vector, raising a RuntimeError if length is zero.
- normalizeNonNull() → PyImath.V2d¶
Equivalent to self.normalize().
- normalized() → PyImath.V2d¶
Returns a normalized version of this vector, or a null vector if length is zero.
- normalizedExc() → PyImath.V2d¶
Returns a normalized version of this vector, or raises a RuntimeError if length is zero.
- normalizedNonNull() → PyImath.V2d¶
Equivalent to self.normalized().
- orthogonal(t: PyImath.V2d) → PyImath.V2d¶
Returns a vector which is perpendicular to this vector and in the same plane as t.
- static project(s: PyImath.V2d, t: PyImath.V2d) → PyImath.V2d¶
Returns the projection of the vector s onto the vector t.
- projection(s: PyImath.V2d) → PyImath.V2d¶
Returns the projection of this vector onto s.
- reflect(t: PyImath.V2d) → PyImath.V2d¶
Returns the result of reflecting this vector in the plane with normal t.
- property x¶
The x component of this vector.
- property y¶
The y component of this vector.
- class Imath.V2f¶
Bases:
pybind11_builtins.pybind11_object
- class V2fIterator¶
Bases:
pybind11_builtins.pybind11_object
Imath Iterator
- __init__(*args, **kwargs)¶
Overloaded function.
__init__(self: PyImath.V2f) -> None
Initializes a vector with zero values.
__init__(self: PyImath.V2f, value: float) -> None
Initializes a vector with all components set to the given value.
__init__(self: PyImath.V2f, iter: object) -> None
Initializes a vector from an iterable.
__init__(self: PyImath.V2f, x: float, y: float) -> None
Initializes a vector from the given x and y components.
__init__(self: PyImath.V2f, arg0: PyImath.V2d) -> None
__init__(self: PyImath.V2f, arg0: PyImath.V2f) -> None
__init__(self: PyImath.V2f, arg0: Imath_3_1::Vec2<int>) -> None
__init__(self: PyImath.V2f, arg0: Imath_3_1::Vec2<short>) -> None
- static baseTypeEpsilon() → float¶
Returns an epsilon value suitable for comparing values of the underlying component type.
- static baseTypeLowest() → float¶
Returns the smallest value that can be represented by the underlying component type.
- static baseTypeMax() → float¶
Returns the largest value that can be represented by the underlying component type.
- static baseTypeSmallest() → float¶
Returns the smallest positive value that can be represented by the underlying component type.
- closestVertex(v1: PyImath.V2f, v2: PyImath.V2f, p: PyImath.V2f) → PyImath.V2f¶
Find the vertex of triangle (v0, v1, v2), which is closest to point p.
- cross(other: PyImath.V2f) → float¶
Returns the cross product of this vector and other.
- static dimensions() → int¶
Returns the number of components in this vector type.
- dot(other: PyImath.V2f) → float¶
Returns the dot product of this vector and other.
- equalWithAbsError(other: PyImath.V2f, error: float) → bool¶
Returns True if this vector equals other, up to the given absolute error.
- equalWithRelError(other: PyImath.V2f, error: float) → bool¶
Returns True if this vector equals other, up to the given relative error.
- length() → float¶
Computes the length of this vector.
- length2() → float¶
Computes the squared length of this vector.
- negate() → PyImath.V2f¶
Negate this vector.
- normalize() → PyImath.V2f¶
Normalize this vector. Sets a null vector if length is zero.
- normalizeExc() → PyImath.V2f¶
Normalize this vector, raising a RuntimeError if length is zero.
- normalizeNonNull() → PyImath.V2f¶
Equivalent to self.normalize().
- normalized() → PyImath.V2f¶
Returns a normalized version of this vector, or a null vector if length is zero.
- normalizedExc() → PyImath.V2f¶
Returns a normalized version of this vector, or raises a RuntimeError if length is zero.
- normalizedNonNull() → PyImath.V2f¶
Equivalent to self.normalized().
- orthogonal(t: PyImath.V2f) → PyImath.V2f¶
Returns a vector which is perpendicular to this vector and in the same plane as t.
- static project(s: PyImath.V2f, t: PyImath.V2f) → PyImath.V2f¶
Returns the projection of the vector s onto the vector t.
- projection(s: PyImath.V2f) → PyImath.V2f¶
Returns the projection of this vector onto s.
- reflect(t: PyImath.V2f) → PyImath.V2f¶
Returns the result of reflecting this vector in the plane with normal t.
- property x¶
The x component of this vector.
- property y¶
The y component of this vector.
- class Imath.V2i¶
Bases:
pybind11_builtins.pybind11_object
- class V2iIterator¶
Bases:
pybind11_builtins.pybind11_object
Imath Iterator
- __init__(*args, **kwargs)¶
Overloaded function.
__init__(self: PyImath.V2i) -> None
Initializes a vector with zero values.
__init__(self: PyImath.V2i, value: int) -> None
Initializes a vector with all components set to the given value.
__init__(self: PyImath.V2i, iter: object) -> None
Initializes a vector from an iterable.
__init__(self: PyImath.V2i, x: int, y: int) -> None
Initializes a vector from the given x and y components.
__init__(self: PyImath.V2i, arg0: PyImath.V2d) -> None
__init__(self: PyImath.V2i, arg0: PyImath.V2f) -> None
__init__(self: PyImath.V2i, arg0: PyImath.V2i) -> None
__init__(self: PyImath.V2i, arg0: Imath_3_1::Vec2<short>) -> None
- static baseTypeEpsilon() → int¶
Returns an epsilon value suitable for comparing values of the underlying component type.
- static baseTypeLowest() → int¶
Returns the smallest value that can be represented by the underlying component type.
- static baseTypeMax() → int¶
Returns the largest value that can be represented by the underlying component type.
- static baseTypeSmallest() → int¶
Returns the smallest positive value that can be represented by the underlying component type.
- closestVertex(v1: PyImath.V2i, v2: PyImath.V2i, p: PyImath.V2i) → PyImath.V2i¶
Find the vertex of triangle (v0, v1, v2), which is closest to point p.
- cross(other: PyImath.V2i) → int¶
Returns the cross product of this vector and other.
- static dimensions() → int¶
Returns the number of components in this vector type.
- dot(other: PyImath.V2i) → int¶
Returns the dot product of this vector and other.
- equalWithAbsError(other: PyImath.V2i, error: int) → bool¶
Returns True if this vector equals other, up to the given absolute error.
- equalWithRelError(other: PyImath.V2i, error: int) → bool¶
Returns True if this vector equals other, up to the given relative error.
- negate() → PyImath.V2i¶
Negate this vector.
- property x¶
The x component of this vector.
- property y¶
The y component of this vector.
- class Imath.V2s¶
Bases:
pybind11_builtins.pybind11_object
- class V2sIterator¶
Bases:
pybind11_builtins.pybind11_object
Imath Iterator
- __init__(*args, **kwargs)¶
Overloaded function.
__init__(self: PyImath.V2s) -> None
Initializes a vector with zero values.
__init__(self: PyImath.V2s, value: int) -> None
Initializes a vector with all components set to the given value.
__init__(self: PyImath.V2s, iter: object) -> None
Initializes a vector from an iterable.
__init__(self: PyImath.V2s, x: int, y: int) -> None
Initializes a vector from the given x and y components.
__init__(self: PyImath.V2s, arg0: PyImath.V2d) -> None
__init__(self: PyImath.V2s, arg0: PyImath.V2f) -> None
__init__(self: PyImath.V2s, arg0: PyImath.V2i) -> None
__init__(self: PyImath.V2s, arg0: PyImath.V2s) -> None
- static baseTypeEpsilon() → int¶
Returns an epsilon value suitable for comparing values of the underlying component type.
- static baseTypeLowest() → int¶
Returns the smallest value that can be represented by the underlying component type.
- static baseTypeMax() → int¶
Returns the largest value that can be represented by the underlying component type.
- static baseTypeSmallest() → int¶
Returns the smallest positive value that can be represented by the underlying component type.
- closestVertex(v1: PyImath.V2s, v2: PyImath.V2s, p: PyImath.V2s) → PyImath.V2s¶
Find the vertex of triangle (v0, v1, v2), which is closest to point p.
- cross(other: PyImath.V2s) → int¶
Returns the cross product of this vector and other.
- static dimensions() → int¶
Returns the number of components in this vector type.
- dot(other: PyImath.V2s) → int¶
Returns the dot product of this vector and other.
- equalWithAbsError(other: PyImath.V2s, error: int) → bool¶
Returns True if this vector equals other, up to the given absolute error.
- equalWithRelError(other: PyImath.V2s, error: int) → bool¶
Returns True if this vector equals other, up to the given relative error.
- negate() → PyImath.V2s¶
Negate this vector.
- property x¶
The x component of this vector.
- property y¶
The y component of this vector.
- class Imath.V3c¶
Bases:
pybind11_builtins.pybind11_object
- class V3cIterator¶
Bases:
pybind11_builtins.pybind11_object
Imath Iterator
- __init__(*args, **kwargs)¶
Overloaded function.
__init__(self: PyImath.V3c) -> None
Initializes a vector with zero values.
__init__(self: PyImath.V3c, value: int) -> None
Initializes a vector with all components set to the given value.
__init__(self: PyImath.V3c, iter: object) -> None
Initializes a vector from an iterable.
__init__(self: PyImath.V3c, x: int, y: int, z: int) -> None
Initializes a vector from the given x, y and z components.
__init__(self: PyImath.V3c, arg0: PyImath.V3d) -> None
__init__(self: PyImath.V3c, arg0: PyImath.V3f) -> None
__init__(self: PyImath.V3c, arg0: PyImath.V3i) -> None
__init__(self: PyImath.V3c, arg0: PyImath.V3s) -> None
- static baseTypeEpsilon() → int¶
Returns an epsilon value suitable for comparing values of the underlying component type.
- static baseTypeLowest() → int¶
Returns the smallest value that can be represented by the underlying component type.
- static baseTypeMax() → int¶
Returns the largest value that can be represented by the underlying component type.
- static baseTypeSmallest() → int¶
Returns the smallest positive value that can be represented by the underlying component type.
- closestVertex(v1: PyImath.V3c, v2: PyImath.V3c, p: PyImath.V3c) → PyImath.V3c¶
Find the vertex of triangle (v0, v1, v2), which is closest to point p.
- cross(other: PyImath.V3c) → PyImath.V3c¶
Returns the cross product of this vector and other.
- static dimensions() → int¶
Returns the number of components in this vector type.
- dot(other: PyImath.V3c) → int¶
Returns the dot product of this vector and other.
- equalWithAbsError(other: PyImath.V3c, error: int) → bool¶
Returns True if this vector equals other, up to the given absolute error.
- equalWithRelError(other: PyImath.V3c, error: int) → bool¶
Returns True if this vector equals other, up to the given relative error.
- negate() → PyImath.V3c¶
Negate this vector.
- property x¶
The x component of this vector.
- property y¶
The y component of this vector.
- property z¶
The z component of this vector
- class Imath.V3d¶
Bases:
pybind11_builtins.pybind11_object
- class V3dIterator¶
Bases:
pybind11_builtins.pybind11_object
Imath Iterator
- __init__(*args, **kwargs)¶
Overloaded function.
__init__(self: PyImath.V3d) -> None
Initializes a vector with zero values.
__init__(self: PyImath.V3d, value: float) -> None
Initializes a vector with all components set to the given value.
__init__(self: PyImath.V3d, iter: object) -> None
Initializes a vector from an iterable.
__init__(self: PyImath.V3d, x: float, y: float, z: float) -> None
Initializes a vector from the given x, y and z components.
__init__(self: PyImath.V3d, arg0: PyImath.V3d) -> None
__init__(self: PyImath.V3d, arg0: Imath_3_1::Vec3<float>) -> None
__init__(self: PyImath.V3d, arg0: Imath_3_1::Vec3<int>) -> None
__init__(self: PyImath.V3d, arg0: Imath_3_1::Vec3<short>) -> None
- static baseTypeEpsilon() → float¶
Returns an epsilon value suitable for comparing values of the underlying component type.
- static baseTypeLowest() → float¶
Returns the smallest value that can be represented by the underlying component type.
- static baseTypeMax() → float¶
Returns the largest value that can be represented by the underlying component type.
- static baseTypeSmallest() → float¶
Returns the smallest positive value that can be represented by the underlying component type.
- closestVertex(v1: PyImath.V3d, v2: PyImath.V3d, p: PyImath.V3d) → PyImath.V3d¶
Find the vertex of triangle (v0, v1, v2), which is closest to point p.
- cross(other: PyImath.V3d) → PyImath.V3d¶
Returns the cross product of this vector and other.
- static dimensions() → int¶
Returns the number of components in this vector type.
- dot(other: PyImath.V3d) → float¶
Returns the dot product of this vector and other.
- equalWithAbsError(other: PyImath.V3d, error: float) → bool¶
Returns True if this vector equals other, up to the given absolute error.
- equalWithRelError(other: PyImath.V3d, error: float) → bool¶
Returns True if this vector equals other, up to the given relative error.
- length() → float¶
Computes the length of this vector.
- length2() → float¶
Computes the squared length of this vector.
- negate() → PyImath.V3d¶
Negate this vector.
- normalize() → PyImath.V3d¶
Normalize this vector. Sets a null vector if length is zero.
- normalizeExc() → PyImath.V3d¶
Normalize this vector, raising a RuntimeError if length is zero.
- normalizeNonNull() → PyImath.V3d¶
Equivalent to self.normalize().
- normalized() → PyImath.V3d¶
Returns a normalized version of this vector, or a null vector if length is zero.
- normalizedExc() → PyImath.V3d¶
Returns a normalized version of this vector, or raises a RuntimeError if length is zero.
- normalizedNonNull() → PyImath.V3d¶
Equivalent to self.normalized().
- orthogonal(t: PyImath.V3d) → PyImath.V3d¶
Returns a vector which is perpendicular to this vector and in the same plane as t.
- static project(s: PyImath.V3d, t: PyImath.V3d) → PyImath.V3d¶
Returns the projection of the vector s onto the vector t.
- projection(s: PyImath.V3d) → PyImath.V3d¶
Returns the projection of this vector onto s.
- reflect(t: PyImath.V3d) → PyImath.V3d¶
Returns the result of reflecting this vector in the plane with normal t.
- property x¶
The x component of this vector.
- property y¶
The y component of this vector.
- property z¶
The z component of this vector
- class Imath.V3f¶
Bases:
pybind11_builtins.pybind11_object
- class V3fIterator¶
Bases:
pybind11_builtins.pybind11_object
Imath Iterator
- __init__(*args, **kwargs)¶
Overloaded function.
__init__(self: PyImath.V3f) -> None
Initializes a vector with zero values.
__init__(self: PyImath.V3f, value: float) -> None
Initializes a vector with all components set to the given value.
__init__(self: PyImath.V3f, iter: object) -> None
Initializes a vector from an iterable.
__init__(self: PyImath.V3f, x: float, y: float, z: float) -> None
Initializes a vector from the given x, y and z components.
__init__(self: PyImath.V3f, arg0: PyImath.V3d) -> None
__init__(self: PyImath.V3f, arg0: PyImath.V3f) -> None
__init__(self: PyImath.V3f, arg0: Imath_3_1::Vec3<int>) -> None
__init__(self: PyImath.V3f, arg0: Imath_3_1::Vec3<short>) -> None
- static baseTypeEpsilon() → float¶
Returns an epsilon value suitable for comparing values of the underlying component type.
- static baseTypeLowest() → float¶
Returns the smallest value that can be represented by the underlying component type.
- static baseTypeMax() → float¶
Returns the largest value that can be represented by the underlying component type.
- static baseTypeSmallest() → float¶
Returns the smallest positive value that can be represented by the underlying component type.
- closestVertex(v1: PyImath.V3f, v2: PyImath.V3f, p: PyImath.V3f) → PyImath.V3f¶
Find the vertex of triangle (v0, v1, v2), which is closest to point p.
- cross(other: PyImath.V3f) → PyImath.V3f¶
Returns the cross product of this vector and other.
- static dimensions() → int¶
Returns the number of components in this vector type.
- dot(other: PyImath.V3f) → float¶
Returns the dot product of this vector and other.
- equalWithAbsError(other: PyImath.V3f, error: float) → bool¶
Returns True if this vector equals other, up to the given absolute error.
- equalWithRelError(other: PyImath.V3f, error: float) → bool¶
Returns True if this vector equals other, up to the given relative error.
- length() → float¶
Computes the length of this vector.
- length2() → float¶
Computes the squared length of this vector.
- negate() → PyImath.V3f¶
Negate this vector.
- normalize() → PyImath.V3f¶
Normalize this vector. Sets a null vector if length is zero.
- normalizeExc() → PyImath.V3f¶
Normalize this vector, raising a RuntimeError if length is zero.
- normalizeNonNull() → PyImath.V3f¶
Equivalent to self.normalize().
- normalized() → PyImath.V3f¶
Returns a normalized version of this vector, or a null vector if length is zero.
- normalizedExc() → PyImath.V3f¶
Returns a normalized version of this vector, or raises a RuntimeError if length is zero.
- normalizedNonNull() → PyImath.V3f¶
Equivalent to self.normalized().
- orthogonal(t: PyImath.V3f) → PyImath.V3f¶
Returns a vector which is perpendicular to this vector and in the same plane as t.
- static project(s: PyImath.V3f, t: PyImath.V3f) → PyImath.V3f¶
Returns the projection of the vector s onto the vector t.
- projection(s: PyImath.V3f) → PyImath.V3f¶
Returns the projection of this vector onto s.
- reflect(t: PyImath.V3f) → PyImath.V3f¶
Returns the result of reflecting this vector in the plane with normal t.
- property x¶
The x component of this vector.
- property y¶
The y component of this vector.
- property z¶
The z component of this vector
- class Imath.V3h¶
Bases:
pybind11_builtins.pybind11_object
- class V3hIterator¶
Bases:
pybind11_builtins.pybind11_object
Imath Iterator
- __init__(*args, **kwargs)¶
Overloaded function.
__init__(self: PyImath.V3h) -> None
Initializes a vector with zero values.
__init__(self: PyImath.V3h, value: Imath_3_1::half) -> None
Initializes a vector with all components set to the given value.
__init__(self: PyImath.V3h, iter: object) -> None
Initializes a vector from an iterable.
__init__(self: PyImath.V3h, x: Imath_3_1::half, y: Imath_3_1::half, z: Imath_3_1::half) -> None
Initializes a vector from the given x, y and z components.
__init__(self: PyImath.V3h, arg0: PyImath.V3d) -> None
__init__(self: PyImath.V3h, arg0: PyImath.V3f) -> None
__init__(self: PyImath.V3h, arg0: PyImath.V3i) -> None
__init__(self: PyImath.V3h, arg0: PyImath.V3s) -> None
- static baseTypeEpsilon() → Imath_3_1::half¶
Returns an epsilon value suitable for comparing values of the underlying component type.
- static baseTypeLowest() → Imath_3_1::half¶
Returns the smallest value that can be represented by the underlying component type.
- static baseTypeMax() → Imath_3_1::half¶
Returns the largest value that can be represented by the underlying component type.
- static baseTypeSmallest() → Imath_3_1::half¶
Returns the smallest positive value that can be represented by the underlying component type.
- closestVertex(v1: PyImath.V3h, v2: PyImath.V3h, p: PyImath.V3h) → PyImath.V3h¶
Find the vertex of triangle (v0, v1, v2), which is closest to point p.
- cross(other: PyImath.V3h) → PyImath.V3h¶
Returns the cross product of this vector and other.
- static dimensions() → int¶
Returns the number of components in this vector type.
- dot(other: PyImath.V3h) → Imath_3_1::half¶
Returns the dot product of this vector and other.
- equalWithAbsError(other: PyImath.V3h, error: Imath_3_1::half) → bool¶
Returns True if this vector equals other, up to the given absolute error.
- equalWithRelError(other: PyImath.V3h, error: Imath_3_1::half) → bool¶
Returns True if this vector equals other, up to the given relative error.
- length() → Imath_3_1::half¶
Computes the length of this vector.
- length2() → Imath_3_1::half¶
Computes the squared length of this vector.
- negate() → PyImath.V3h¶
Negate this vector.
- normalize() → PyImath.V3h¶
Normalize this vector. Sets a null vector if length is zero.
- normalizeExc() → PyImath.V3h¶
Normalize this vector, raising a RuntimeError if length is zero.
- normalizeNonNull() → PyImath.V3h¶
Equivalent to self.normalize().
- normalized() → PyImath.V3h¶
Returns a normalized version of this vector, or a null vector if length is zero.
- normalizedExc() → PyImath.V3h¶
Returns a normalized version of this vector, or raises a RuntimeError if length is zero.
- normalizedNonNull() → PyImath.V3h¶
Equivalent to self.normalized().
- orthogonal(t: PyImath.V3h) → PyImath.V3h¶
Returns a vector which is perpendicular to this vector and in the same plane as t.
- static project(s: PyImath.V3h, t: PyImath.V3h) → PyImath.V3h¶
Returns the projection of the vector s onto the vector t.
- projection(s: PyImath.V3h) → PyImath.V3h¶
Returns the projection of this vector onto s.
- reflect(t: PyImath.V3h) → PyImath.V3h¶
Returns the result of reflecting this vector in the plane with normal t.
- property x¶
The x component of this vector.
- property y¶
The y component of this vector.
- property z¶
The z component of this vector
- class Imath.V3i¶
Bases:
pybind11_builtins.pybind11_object
- class V3iIterator¶
Bases:
pybind11_builtins.pybind11_object
Imath Iterator
- __init__(*args, **kwargs)¶
Overloaded function.
__init__(self: PyImath.V3i) -> None
Initializes a vector with zero values.
__init__(self: PyImath.V3i, value: int) -> None
Initializes a vector with all components set to the given value.
__init__(self: PyImath.V3i, iter: object) -> None
Initializes a vector from an iterable.
__init__(self: PyImath.V3i, x: int, y: int, z: int) -> None
Initializes a vector from the given x, y and z components.
__init__(self: PyImath.V3i, arg0: PyImath.V3d) -> None
__init__(self: PyImath.V3i, arg0: PyImath.V3f) -> None
__init__(self: PyImath.V3i, arg0: PyImath.V3i) -> None
__init__(self: PyImath.V3i, arg0: Imath_3_1::Vec3<short>) -> None
- static baseTypeEpsilon() → int¶
Returns an epsilon value suitable for comparing values of the underlying component type.
- static baseTypeLowest() → int¶
Returns the smallest value that can be represented by the underlying component type.
- static baseTypeMax() → int¶
Returns the largest value that can be represented by the underlying component type.
- static baseTypeSmallest() → int¶
Returns the smallest positive value that can be represented by the underlying component type.
- closestVertex(v1: PyImath.V3i, v2: PyImath.V3i, p: PyImath.V3i) → PyImath.V3i¶
Find the vertex of triangle (v0, v1, v2), which is closest to point p.
- cross(other: PyImath.V3i) → PyImath.V3i¶
Returns the cross product of this vector and other.
- static dimensions() → int¶
Returns the number of components in this vector type.
- dot(other: PyImath.V3i) → int¶
Returns the dot product of this vector and other.
- equalWithAbsError(other: PyImath.V3i, error: int) → bool¶
Returns True if this vector equals other, up to the given absolute error.
- equalWithRelError(other: PyImath.V3i, error: int) → bool¶
Returns True if this vector equals other, up to the given relative error.
- negate() → PyImath.V3i¶
Negate this vector.
- property x¶
The x component of this vector.
- property y¶
The y component of this vector.
- property z¶
The z component of this vector
- class Imath.V3s¶
Bases:
pybind11_builtins.pybind11_object
- class V3sIterator¶
Bases:
pybind11_builtins.pybind11_object
Imath Iterator
- __init__(*args, **kwargs)¶
Overloaded function.
__init__(self: PyImath.V3s) -> None
Initializes a vector with zero values.
__init__(self: PyImath.V3s, value: int) -> None
Initializes a vector with all components set to the given value.
__init__(self: PyImath.V3s, iter: object) -> None
Initializes a vector from an iterable.
__init__(self: PyImath.V3s, x: int, y: int, z: int) -> None
Initializes a vector from the given x, y and z components.
__init__(self: PyImath.V3s, arg0: PyImath.V3d) -> None
__init__(self: PyImath.V3s, arg0: PyImath.V3f) -> None
__init__(self: PyImath.V3s, arg0: PyImath.V3i) -> None
__init__(self: PyImath.V3s, arg0: PyImath.V3s) -> None
- static baseTypeEpsilon() → int¶
Returns an epsilon value suitable for comparing values of the underlying component type.
- static baseTypeLowest() → int¶
Returns the smallest value that can be represented by the underlying component type.
- static baseTypeMax() → int¶
Returns the largest value that can be represented by the underlying component type.
- static baseTypeSmallest() → int¶
Returns the smallest positive value that can be represented by the underlying component type.
- closestVertex(v1: PyImath.V3s, v2: PyImath.V3s, p: PyImath.V3s) → PyImath.V3s¶
Find the vertex of triangle (v0, v1, v2), which is closest to point p.
- cross(other: PyImath.V3s) → PyImath.V3s¶
Returns the cross product of this vector and other.
- static dimensions() → int¶
Returns the number of components in this vector type.
- dot(other: PyImath.V3s) → int¶
Returns the dot product of this vector and other.
- equalWithAbsError(other: PyImath.V3s, error: int) → bool¶
Returns True if this vector equals other, up to the given absolute error.
- equalWithRelError(other: PyImath.V3s, error: int) → bool¶
Returns True if this vector equals other, up to the given relative error.
- negate() → PyImath.V3s¶
Negate this vector.
- property x¶
The x component of this vector.
- property y¶
The y component of this vector.
- property z¶
The z component of this vector
- Imath.abs(arg0: float) → float¶
- Imath.ceil(arg0: float) → int¶
- Imath.clamp(*args, **kwargs)¶
Overloaded function.
clamp(arg0: float, arg1: float, arg2: float) -> float
clamp(arg0: float, arg1: float, arg2: float) -> float
- Imath.cmp(arg0: float, arg1: float) → int¶
- Imath.cmpt(arg0: float, arg1: float, arg2: float) → int¶
- Imath.divp(arg0: int, arg1: int) → int¶
Integer division where the remainder of x/y is always positive: divp(x,y) == floor (double(x) / double(y))
- Imath.divs(arg0: int, arg1: int) → int¶
Integer division where the remainder of x/y has the same sign as x: divs(x,y) == (abs(x) / abs(y)) * (sign(x) * sign(y))
- Imath.equal(a: float, b: float, error: float) → bool¶
Returns True if a and b are equal up to the given error.
- Imath.finited(arg0: float) → bool¶
Return true if the number is not a NaN or Infinity.
- Imath.finitef(arg0: float) → bool¶
Return true if the number is not a NaN or Infinity.
- Imath.floor(arg0: float) → int¶
- class Imath.half¶
Bases:
pybind11_builtins.pybind11_object
- __init__(*args, **kwargs)¶
Overloaded function.
__init__(self: PyImath.half) -> None
Initializes a half with zero value.
__init__(self: PyImath.half, value: float) -> None
Initializes a half from the given float value.
- property bits¶
The internal bit representation of this half.
- isDenormalized() → bool¶
Returns True if this half is a denormalized number.
- isFinite() → bool¶
Returns True if this half is a normalized number, a denormalized number or zero.
- isInfinity() → bool¶
Returns True if this half is a positive or a negative infinity.
- isNan() → bool¶
Returns True if this half is a NaN.
- isNegative() → bool¶
Returns True if the sign bit of this half is set (negative).
- isNormalized() → bool¶
Returns True if this half is a normalized number.
- isZero() → bool¶
Returns True if this half is zero.
- static negInf() → PyImath.half¶
Returns -infinity.
- static posInf() → PyImath.half¶
Returns +infinity.
- static qNan() → PyImath.half¶
Returns a NaN with the bit pattern 0111111111111111
- round(n: int) → PyImath.half¶
Round to n-bit precision (n should be between 0 and 10). After rounding, the significand’s 10-n least significant bits will be zero.
- static sNan() → PyImath.half¶
Returns a NaN with the bit pattern 0111110111111111
- Imath.iszero(arg0: float, arg1: float) → bool¶
- Imath.lerp(*args, **kwargs)¶
Overloaded function.
lerp(arg0: float, arg1: float, arg2: float) -> float
lerp(arg0: PyImath.V3f, arg1: PyImath.V3f, arg2: float) -> PyImath.V3f
lerp(arg0: PyImath.V2f, arg1: PyImath.V2f, arg2: float) -> PyImath.V2f
lerp(arg0: PyImath.V3d, arg1: PyImath.V3d, arg2: float) -> PyImath.V3d
lerp(arg0: PyImath.V2d, arg1: PyImath.V2d, arg2: float) -> PyImath.V2d
lerp(arg0: PyImath.V3i, arg1: PyImath.V3i, arg2: int) -> PyImath.V3i
lerp(arg0: PyImath.V2i, arg1: PyImath.V2i, arg2: int) -> PyImath.V2i
lerp(arg0: PyImath.V3s, arg1: PyImath.V3s, arg2: int) -> PyImath.V3s
lerp(arg0: PyImath.V2s, arg1: PyImath.V2s, arg2: int) -> PyImath.V2s
lerp(arg0: PyImath.C4f, arg1: PyImath.C4f, arg2: float) -> PyImath.C4f
lerp(arg0: PyImath.C3f, arg1: PyImath.C3f, arg2: float) -> PyImath.C3f
lerp(arg0: PyImath.C4h, arg1: PyImath.C4h, arg2: PyImath.half) -> PyImath.C4h
lerp(arg0: PyImath.C3h, arg1: PyImath.C3h, arg2: PyImath.half) -> PyImath.C3h
lerp(arg0: PyImath.C4c, arg1: PyImath.C4c, arg2: str) -> PyImath.C4c
lerp(arg0: PyImath.C3c, arg1: PyImath.C3c, arg2: str) -> PyImath.C3c
- Imath.lerpfactor(arg0: float, arg1: float, arg2: float) → float¶
- Imath.modp(arg0: int, arg1: int) → int¶
Integer remainder where the remainder of x/y is always positive: modp(x,y) == x - y * divp(x,y)
- Imath.mods(arg0: int, arg1: int) → int¶
Integer remainder where the remainder of x/y has the same sign as x: mods(x,y) == x - y * divs(x,y)
- Imath.predd(arg0: float) → float¶
Returns double(d-e), where e is the smallest positive number such that double(d-e) != d. Exceptions: If the input value is an infinity or a nan, succf(), predf(), succd(), and predd() all return the input value without changing it.
- Imath.predf(arg0: float) → float¶
Returns float(f-e), where e is the smallest positive number such that float(f-e) != f. Exceptions: If the input value is an infinity or a nan, succf(), predf(), succd(), and predd() all return the input value without changing it.
- Imath.sign(arg0: float) → int¶
- Imath.succd(arg0: float) → float¶
Returns double(d+e), where e is the smallest positive number such that double(d+e) != d. Exceptions: If the input value is an infinity or a nan, succf(), predf(), succd(), and predd() all return the input value without changing it.
- Imath.succf(arg0: float) → float¶
Returns float(f+e), where e is the smallest positive number such that float(f+e) != f. Exceptions: If the input value is an infinity or a nan, succf(), predf(), succd(), and predd() all return the input value without changing it.
- Imath.trunc(arg0: float) → int¶
- Imath.ulerp(arg0: float, arg1: float, arg2: float) → float¶