Imath
(Python)
- class Imath.Box2d
Bases:
pybind11_object
- class Box2dIterator
Bases:
pybind11_object
Imath Iterator
- __init__(*args, **kwargs)
Overloaded function.
__init__(self: PyImath.Box2d) -> None
Returns an empty box.
__init__(self: PyImath.Box2d, point: PyImath.V2d) -> None
Returns a box with min and max both set to the given point.
__init__(self: PyImath.Box2d, min: PyImath.V2d, max: PyImath.V2d) -> None
Returns a box with min and max points defined by the given points.
__init__(self: PyImath.Box2d, iterable: object) -> None
Returns a box using values from the given iterable.
- center() PyImath.V2d
Returns the central point of this box.
- extendBy(*args, **kwargs)
Overloaded function.
extendBy(self: PyImath.Box2d, point: PyImath.V2d) -> None
Extends this box to include the given point.
extendBy(self: PyImath.Box2d, box: PyImath.Box2d) -> None
Extends this box to include the given box.
- hasVolume() bool
Returns True if this box has volume.
- intersects(*args, **kwargs)
Overloaded function.
intersects(self: PyImath.Box2d, point: PyImath.V2d) -> bool
Returns True if this box encompasses the given point.
intersects(self: PyImath.Box2d, box: PyImath.Box2d) -> bool
Returns True if this box intersects the given box.
- isEmpty() bool
Returns True if this box has no volume.
- majorAxis() int
Returns the index of the longest axis of this box.
- makeEmpty() None
Converts this box to an empty box.
- property max
The maximum corner of this box.
- property min
The minimum corner of this box.
- size() PyImath.V2d
Returns the volume of this box.
- class Imath.Box2f
Bases:
pybind11_object
- class Box2fIterator
Bases:
pybind11_object
Imath Iterator
- __init__(*args, **kwargs)
Overloaded function.
__init__(self: PyImath.Box2f) -> None
Returns an empty box.
__init__(self: PyImath.Box2f, point: PyImath.V2f) -> None
Returns a box with min and max both set to the given point.
__init__(self: PyImath.Box2f, min: PyImath.V2f, max: PyImath.V2f) -> None
Returns a box with min and max points defined by the given points.
__init__(self: PyImath.Box2f, iterable: object) -> None
Returns a box using values from the given iterable.
- center() PyImath.V2f
Returns the central point of this box.
- extendBy(*args, **kwargs)
Overloaded function.
extendBy(self: PyImath.Box2f, point: PyImath.V2f) -> None
Extends this box to include the given point.
extendBy(self: PyImath.Box2f, box: PyImath.Box2f) -> None
Extends this box to include the given box.
- hasVolume() bool
Returns True if this box has volume.
- intersects(*args, **kwargs)
Overloaded function.
intersects(self: PyImath.Box2f, point: PyImath.V2f) -> bool
Returns True if this box encompasses the given point.
intersects(self: PyImath.Box2f, box: PyImath.Box2f) -> bool
Returns True if this box intersects the given box.
- isEmpty() bool
Returns True if this box has no volume.
- majorAxis() int
Returns the index of the longest axis of this box.
- makeEmpty() None
Converts this box to an empty box.
- property max
The maximum corner of this box.
- property min
The minimum corner of this box.
- size() PyImath.V2f
Returns the volume of this box.
- class Imath.Box2i
Bases:
pybind11_object
- class Box2iIterator
Bases:
pybind11_object
Imath Iterator
- __init__(*args, **kwargs)
Overloaded function.
__init__(self: PyImath.Box2i) -> None
Returns an empty box.
__init__(self: PyImath.Box2i, point: PyImath.V2i) -> None
Returns a box with min and max both set to the given point.
__init__(self: PyImath.Box2i, min: PyImath.V2i, max: PyImath.V2i) -> None
Returns a box with min and max points defined by the given points.
__init__(self: PyImath.Box2i, iterable: object) -> None
Returns a box using values from the given iterable.
- center() PyImath.V2i
Returns the central point of this box.
- extendBy(*args, **kwargs)
Overloaded function.
extendBy(self: PyImath.Box2i, point: PyImath.V2i) -> None
Extends this box to include the given point.
extendBy(self: PyImath.Box2i, box: PyImath.Box2i) -> None
Extends this box to include the given box.
- hasVolume() bool
Returns True if this box has volume.
- intersects(*args, **kwargs)
Overloaded function.
intersects(self: PyImath.Box2i, point: PyImath.V2i) -> bool
Returns True if this box encompasses the given point.
intersects(self: PyImath.Box2i, box: PyImath.Box2i) -> bool
Returns True if this box intersects the given box.
- isEmpty() bool
Returns True if this box has no volume.
- majorAxis() int
Returns the index of the longest axis of this box.
- makeEmpty() None
Converts this box to an empty box.
- property max
The maximum corner of this box.
- property min
The minimum corner of this box.
- size() PyImath.V2i
Returns the volume of this box.
- class Imath.Box2s
Bases:
pybind11_object
- class Box2sIterator
Bases:
pybind11_object
Imath Iterator
- __init__(*args, **kwargs)
Overloaded function.
__init__(self: PyImath.Box2s) -> None
Returns an empty box.
__init__(self: PyImath.Box2s, point: PyImath.V2s) -> None
Returns a box with min and max both set to the given point.
__init__(self: PyImath.Box2s, min: PyImath.V2s, max: PyImath.V2s) -> None
Returns a box with min and max points defined by the given points.
__init__(self: PyImath.Box2s, iterable: object) -> None
Returns a box using values from the given iterable.
- center() PyImath.V2s
Returns the central point of this box.
- extendBy(*args, **kwargs)
Overloaded function.
extendBy(self: PyImath.Box2s, point: PyImath.V2s) -> None
Extends this box to include the given point.
extendBy(self: PyImath.Box2s, box: PyImath.Box2s) -> None
Extends this box to include the given box.
- hasVolume() bool
Returns True if this box has volume.
- intersects(*args, **kwargs)
Overloaded function.
intersects(self: PyImath.Box2s, point: PyImath.V2s) -> bool
Returns True if this box encompasses the given point.
intersects(self: PyImath.Box2s, box: PyImath.Box2s) -> bool
Returns True if this box intersects the given box.
- isEmpty() bool
Returns True if this box has no volume.
- majorAxis() int
Returns the index of the longest axis of this box.
- makeEmpty() None
Converts this box to an empty box.
- property max
The maximum corner of this box.
- property min
The minimum corner of this box.
- size() PyImath.V2s
Returns the volume of this box.
- class Imath.Box3d
Bases:
pybind11_object
- class Box3dIterator
Bases:
pybind11_object
Imath Iterator
- __init__(*args, **kwargs)
Overloaded function.
__init__(self: PyImath.Box3d) -> None
Returns an empty box.
__init__(self: PyImath.Box3d, point: PyImath.V3d) -> None
Returns a box with min and max both set to the given point.
__init__(self: PyImath.Box3d, min: PyImath.V3d, max: PyImath.V3d) -> None
Returns a box with min and max points defined by the given points.
__init__(self: PyImath.Box3d, iterable: object) -> None
Returns a box using values from the given iterable.
- center() PyImath.V3d
Returns the central point of this box.
- extendBy(*args, **kwargs)
Overloaded function.
extendBy(self: PyImath.Box3d, point: PyImath.V3d) -> None
Extends this box to include the given point.
extendBy(self: PyImath.Box3d, box: PyImath.Box3d) -> None
Extends this box to include the given box.
- hasVolume() bool
Returns True if this box has volume.
- intersects(*args, **kwargs)
Overloaded function.
intersects(self: PyImath.Box3d, point: PyImath.V3d) -> bool
Returns True if this box encompasses the given point.
intersects(self: PyImath.Box3d, box: PyImath.Box3d) -> bool
Returns True if this box intersects the given box.
- isEmpty() bool
Returns True if this box has no volume.
- majorAxis() int
Returns the index of the longest axis of this box.
- makeEmpty() None
Converts this box to an empty box.
- property max
The maximum corner of this box.
- property min
The minimum corner of this box.
- size() PyImath.V3d
Returns the volume of this box.
- class Imath.Box3f
Bases:
pybind11_object
- class Box3fIterator
Bases:
pybind11_object
Imath Iterator
- __init__(*args, **kwargs)
Overloaded function.
__init__(self: PyImath.Box3f) -> None
Returns an empty box.
__init__(self: PyImath.Box3f, point: PyImath.V3f) -> None
Returns a box with min and max both set to the given point.
__init__(self: PyImath.Box3f, min: PyImath.V3f, max: PyImath.V3f) -> None
Returns a box with min and max points defined by the given points.
__init__(self: PyImath.Box3f, iterable: object) -> None
Returns a box using values from the given iterable.
- center() PyImath.V3f
Returns the central point of this box.
- extendBy(*args, **kwargs)
Overloaded function.
extendBy(self: PyImath.Box3f, point: PyImath.V3f) -> None
Extends this box to include the given point.
extendBy(self: PyImath.Box3f, box: PyImath.Box3f) -> None
Extends this box to include the given box.
- hasVolume() bool
Returns True if this box has volume.
- intersects(*args, **kwargs)
Overloaded function.
intersects(self: PyImath.Box3f, point: PyImath.V3f) -> bool
Returns True if this box encompasses the given point.
intersects(self: PyImath.Box3f, box: PyImath.Box3f) -> bool
Returns True if this box intersects the given box.
- isEmpty() bool
Returns True if this box has no volume.
- majorAxis() int
Returns the index of the longest axis of this box.
- makeEmpty() None
Converts this box to an empty box.
- property max
The maximum corner of this box.
- property min
The minimum corner of this box.
- size() PyImath.V3f
Returns the volume of this box.
- class Imath.Box3i
Bases:
pybind11_object
- class Box3iIterator
Bases:
pybind11_object
Imath Iterator
- __init__(*args, **kwargs)
Overloaded function.
__init__(self: PyImath.Box3i) -> None
Returns an empty box.
__init__(self: PyImath.Box3i, point: PyImath.V3i) -> None
Returns a box with min and max both set to the given point.
__init__(self: PyImath.Box3i, min: PyImath.V3i, max: PyImath.V3i) -> None
Returns a box with min and max points defined by the given points.
__init__(self: PyImath.Box3i, iterable: object) -> None
Returns a box using values from the given iterable.
- center() PyImath.V3i
Returns the central point of this box.
- extendBy(*args, **kwargs)
Overloaded function.
extendBy(self: PyImath.Box3i, point: PyImath.V3i) -> None
Extends this box to include the given point.
extendBy(self: PyImath.Box3i, box: PyImath.Box3i) -> None
Extends this box to include the given box.
- hasVolume() bool
Returns True if this box has volume.
- intersects(*args, **kwargs)
Overloaded function.
intersects(self: PyImath.Box3i, point: PyImath.V3i) -> bool
Returns True if this box encompasses the given point.
intersects(self: PyImath.Box3i, box: PyImath.Box3i) -> bool
Returns True if this box intersects the given box.
- isEmpty() bool
Returns True if this box has no volume.
- majorAxis() int
Returns the index of the longest axis of this box.
- makeEmpty() None
Converts this box to an empty box.
- property max
The maximum corner of this box.
- property min
The minimum corner of this box.
- size() PyImath.V3i
Returns the volume of this box.
- class Imath.Box3s
Bases:
pybind11_object
- class Box3sIterator
Bases:
pybind11_object
Imath Iterator
- __init__(*args, **kwargs)
Overloaded function.
__init__(self: PyImath.Box3s) -> None
Returns an empty box.
__init__(self: PyImath.Box3s, point: PyImath.V3s) -> None
Returns a box with min and max both set to the given point.
__init__(self: PyImath.Box3s, min: PyImath.V3s, max: PyImath.V3s) -> None
Returns a box with min and max points defined by the given points.
__init__(self: PyImath.Box3s, iterable: object) -> None
Returns a box using values from the given iterable.
- center() PyImath.V3s
Returns the central point of this box.
- extendBy(*args, **kwargs)
Overloaded function.
extendBy(self: PyImath.Box3s, point: PyImath.V3s) -> None
Extends this box to include the given point.
extendBy(self: PyImath.Box3s, box: PyImath.Box3s) -> None
Extends this box to include the given box.
- hasVolume() bool
Returns True if this box has volume.
- intersects(*args, **kwargs)
Overloaded function.
intersects(self: PyImath.Box3s, point: PyImath.V3s) -> bool
Returns True if this box encompasses the given point.
intersects(self: PyImath.Box3s, box: PyImath.Box3s) -> bool
Returns True if this box intersects the given box.
- isEmpty() bool
Returns True if this box has no volume.
- majorAxis() int
Returns the index of the longest axis of this box.
- makeEmpty() None
Converts this box to an empty box.
- property max
The maximum corner of this box.
- property min
The minimum corner of this box.
- size() PyImath.V3s
Returns the volume of this box.
- class Imath.C3c
Bases:
V3c
- class C3cIterator
Bases:
pybind11_object
Imath Iterator
- __init__(*args, **kwargs)
Overloaded function.
__init__(self: PyImath.C3c) -> None
Initializes a color with all channels zero.
__init__(self: PyImath.C3c, value: object) -> None
Initializes a color from the given number of iterable.
__init__(self: PyImath.C3c, arg0: int, arg1: int, arg2: int) -> None
Initializes a color from RGB values.
- property b
The blue channel of this color.
- property g
The green channel of this color.
- static hsv2rgb(arg0: PyImath.V3c) PyImath.V3c
Convert the given HSV color to RGB.
- negate() PyImath.C3c
Negates this color’s channels.
- static packed2rgb(arg0: int, arg1: PyImath.V3c) None
Convert the given packed color to RGB.
- property r
The red channel of this color.
- static rgb2hsv(arg0: PyImath.V3c) PyImath.V3c
Convert the given RGB color to HSV.
- static rgb2packed(arg0: PyImath.V3c) int
Convert the given RGB color to packed format.
- class Imath.C3f
Bases:
V3f
- class C3fIterator
Bases:
pybind11_object
Imath Iterator
- __init__(*args, **kwargs)
Overloaded function.
__init__(self: PyImath.C3f) -> None
Initializes a color with all channels zero.
__init__(self: PyImath.C3f, value: object) -> None
Initializes a color from the given number of iterable.
__init__(self: PyImath.C3f, arg0: float, arg1: float, arg2: float) -> None
Initializes a color from RGB values.
- property b
The blue channel of this color.
- property g
The green channel of this color.
- static hsv2rgb(arg0: PyImath.V3f) PyImath.V3f
Convert the given HSV color to RGB.
- negate() PyImath.C3f
Negates this color’s channels.
- static packed2rgb(arg0: int, arg1: PyImath.V3f) None
Convert the given packed color to RGB.
- property r
The red channel of this color.
- static rgb2hsv(arg0: PyImath.V3f) PyImath.V3f
Convert the given RGB color to HSV.
- static rgb2packed(arg0: PyImath.V3f) int
Convert the given RGB color to packed format.
- class Imath.C3h
Bases:
V3h
- class C3hIterator
Bases:
pybind11_object
Imath Iterator
- __init__(*args, **kwargs)
Overloaded function.
__init__(self: PyImath.C3h) -> None
Initializes a color with all channels zero.
__init__(self: PyImath.C3h, value: object) -> None
Initializes a color from the given number of iterable.
__init__(self: PyImath.C3h, arg0: Imath_3_1::half, arg1: Imath_3_1::half, arg2: Imath_3_1::half) -> None
Initializes a color from RGB values.
- property b
The blue channel of this color.
- property g
The green channel of this color.
- static hsv2rgb(arg0: PyImath.V3h) PyImath.V3h
Convert the given HSV color to RGB.
- negate() PyImath.C3h
Negates this color’s channels.
- static packed2rgb(arg0: int, arg1: PyImath.V3h) None
Convert the given packed color to RGB.
- property r
The red channel of this color.
- static rgb2hsv(arg0: PyImath.V3h) PyImath.V3h
Convert the given RGB color to HSV.
- static rgb2packed(arg0: PyImath.V3h) int
Convert the given RGB color to packed format.
- class Imath.C4c
Bases:
pybind11_object
- class C4cIterator
Bases:
pybind11_object
Imath Iterator
- __init__(*args, **kwargs)
Overloaded function.
__init__(self: PyImath.C4c) -> None
Initializes a color with all channels zero.
__init__(self: PyImath.C4c, value: object) -> None
Initializes a color from the given number of iterable.
__init__(self: PyImath.C4c, arg0: int, arg1: int, arg2: int, arg3: int) -> None
Initializes a color from RGBA values.
- property a
The alpha channel of this color.
- property b
The blue channel of this color.
- static baseTypeEpsilon() int
Returns a suitable epsilon for comparing values of the underlying component type.
- static baseTypeLowest() int
Returns the smallest value of the underlying component type.
- static baseTypeMax() int
Returns the largest value of the underlying component type.
- static baseTypeSmallest() int
Returns the smallest positive value of the underlying component type.
- static dimensions() int
- property g
The green channel of this color.
- static hsv2rgb(arg0: PyImath.C4c) PyImath.C4c
Convert the given HSV color to RGB.
- negate() PyImath.C4c
Negates this color’s channels.
- static packed2rgb(arg0: int, arg1: PyImath.C4c) None
Convert the given packed color to RGB.
- property r
The red channel of this color.
- static rgb2hsv(arg0: PyImath.C4c) PyImath.C4c
Convert the given RGB color to HSV.
- static rgb2packed(arg0: PyImath.C4c) int
Convert the given RGB color to packed format.
- class Imath.C4f
Bases:
pybind11_object
- class C4fIterator
Bases:
pybind11_object
Imath Iterator
- __init__(*args, **kwargs)
Overloaded function.
__init__(self: PyImath.C4f) -> None
Initializes a color with all channels zero.
__init__(self: PyImath.C4f, value: object) -> None
Initializes a color from the given number of iterable.
__init__(self: PyImath.C4f, arg0: float, arg1: float, arg2: float, arg3: float) -> None
Initializes a color from RGBA values.
- property a
The alpha channel of this color.
- property b
The blue channel of this color.
- static baseTypeEpsilon() float
Returns a suitable epsilon for comparing values of the underlying component type.
- static baseTypeLowest() float
Returns the smallest value of the underlying component type.
- static baseTypeMax() float
Returns the largest value of the underlying component type.
- static baseTypeSmallest() float
Returns the smallest positive value of the underlying component type.
- static dimensions() int
- property g
The green channel of this color.
- static hsv2rgb(arg0: PyImath.C4f) PyImath.C4f
Convert the given HSV color to RGB.
- negate() PyImath.C4f
Negates this color’s channels.
- static packed2rgb(arg0: int, arg1: PyImath.C4f) None
Convert the given packed color to RGB.
- property r
The red channel of this color.
- static rgb2hsv(arg0: PyImath.C4f) PyImath.C4f
Convert the given RGB color to HSV.
- static rgb2packed(arg0: PyImath.C4f) int
Convert the given RGB color to packed format.
- class Imath.C4h
Bases:
pybind11_object
- class C4hIterator
Bases:
pybind11_object
Imath Iterator
- __init__(*args, **kwargs)
Overloaded function.
__init__(self: PyImath.C4h) -> None
Initializes a color with all channels zero.
__init__(self: PyImath.C4h, value: object) -> None
Initializes a color from the given number of iterable.
__init__(self: PyImath.C4h, arg0: Imath_3_1::half, arg1: Imath_3_1::half, arg2: Imath_3_1::half, arg3: Imath_3_1::half) -> None
Initializes a color from RGBA values.
- property a
The alpha channel of this color.
- property b
The blue channel of this color.
- static baseTypeEpsilon() Imath_3_1::half
Returns a suitable epsilon for comparing values of the underlying component type.
- static baseTypeLowest() Imath_3_1::half
Returns the smallest value of the underlying component type.
- static baseTypeMax() Imath_3_1::half
Returns the largest value of the underlying component type.
- static baseTypeSmallest() Imath_3_1::half
Returns the smallest positive value of the underlying component type.
- static dimensions() int
- property g
The green channel of this color.
- static hsv2rgb(arg0: PyImath.C4h) PyImath.C4h
Convert the given HSV color to RGB.
- negate() PyImath.C4h
Negates this color’s channels.
- static packed2rgb(arg0: int, arg1: PyImath.C4h) None
Convert the given packed color to RGB.
- property r
The red channel of this color.
- static rgb2hsv(arg0: PyImath.C4h) PyImath.C4h
Convert the given RGB color to HSV.
- static rgb2packed(arg0: PyImath.C4h) int
Convert the given RGB color to packed format.
- class Imath.Eulerd
Bases:
V3d
- class Axis
Bases:
pybind11_object
Members:
X
Y
Z
- X = <Axis.X: 0>
- Y = <Axis.Y: 1>
- Z = <Axis.Z: 2>
- __init__(value: int) None
- property name
- property value
- class InputLayout
Bases:
pybind11_object
Members:
XYZLayout
IJKLayout
- IJKLayout = <InputLayout.IJKLayout: 1>
- XYZLayout = <InputLayout.XYZLayout: 0>
- __init__(value: int) None
- property name
- property value
- class Order
Bases:
pybind11_object
Members:
XYZ
XZY
YZX
YXZ
ZXY
ZYX
XZX
XYX
YXY
YZY
ZYZ
ZXZ
XYZr
XZYr
YZXr
YXZr
ZXYr
ZYXr
XZXr
XYXr
YXYr
YZYr
ZYZr
ZXZr
Legal
Min
Max
Default
- Default = <Order.XYZ: 257>
- Legal = <Order.Legal: 12561>
- Max = <Order.ZXZ: 8465>
- Min = <Order.ZXYr: 0>
- XYX = <Order.XYX: 273>
- XYXr = <Order.XYXr: 8208>
- XYZ = <Order.XYZ: 257>
- XYZr = <Order.XYZr: 8192>
- XZX = <Order.XZX: 17>
- XZXr = <Order.XZXr: 8464>
- XZY = <Order.XZY: 1>
- XZYr = <Order.XZYr: 8448>
- YXY = <Order.YXY: 4113>
- YXYr = <Order.YXYr: 4368>
- YXZ = <Order.YXZ: 4097>
- YXZr = <Order.YXZr: 4352>
- YZX = <Order.YZX: 4353>
- YZXr = <Order.YZXr: 4096>
- YZY = <Order.YZY: 4369>
- YZYr = <Order.YZYr: 4112>
- ZXY = <Order.ZXY: 8449>
- ZXYr = <Order.ZXYr: 0>
- ZXZ = <Order.ZXZ: 8465>
- ZXZr = <Order.ZXZr: 16>
- ZYX = <Order.ZYX: 8193>
- ZYXr = <Order.ZYXr: 256>
- ZYZ = <Order.ZYZ: 8209>
- ZYZr = <Order.ZYZr: 272>
- __init__(value: int) None
- property name
- property value
- __init__(*args, **kwargs)
Overloaded function.
__init__(self: PyImath.Eulerd, order: PyImath.Eulerd.Order = <Order.XYZ: 257>) -> None
Initializes Euler angles with zero values and given order.
__init__(self: PyImath.Eulerd, vec: PyImath.V3d, order: PyImath.Eulerd.Order, layout: PyImath.Eulerd.InputLayout = <InputLayout.IJKLayout: 1>) -> None
Initializes Euler angles from the given vector, order and input data layout.
__init__(self: PyImath.Eulerd, x: float, y: float, z: float, order: PyImath.Eulerd.Order = <Order.XYZ: 257>, layout: PyImath.Eulerd.InputLayout = <InputLayout.IJKLayout: 1>) -> None
Initializes Euler angles from the three given scalars, read using the given order and layout.
__init__(self: PyImath.Eulerd, other: PyImath.Eulerd, order: PyImath.Eulerd.Order) -> None
Initializes Euler angles from another Euler angles object, using converting to the given order.
__init__(self: PyImath.Eulerd, mat: PyImath.M33d, order: PyImath.Eulerd.Order = <Order.XYZ: 257>) -> None
Initializes Euler angles from the given 3x3 matrix and order.
__init__(self: PyImath.Eulerd, mat: PyImath.M44d, order: PyImath.Eulerd.Order = <Order.XYZ: 257>) -> None
Initializes Euler angles from the given 4x4 matrix and order.
- static angleMod(arg0: float) float
Converts an angle to its equivalent in [-pi, pi].
- angleOrder() Tuple[int, int, int]
Returns a 3-tuple of axis indices for this Euler object.
- extract(*args, **kwargs)
Overloaded function.
extract(self: PyImath.Eulerd, mat: PyImath.M33d) -> None
Sets the Euler values from the given 3x3 matrix. The given matrix must not contain shear or non-uniform scaling.
extract(self: PyImath.Eulerd, mat: PyImath.M44d) -> None
Sets the Euler values from the given 4x4 matrix. The given matrix must not contain shear or non-uniform scaling.
extract(self: PyImath.Eulerd, quat: Imath_3_1::Quat<double>) -> None
Sets the Euler values from the given quaternion.
- property frameStatic
True if this Euler’s order is not a relative order.
- property initialAxis
The initial Axis of this Euler.
- property initialRepeated
True if this Euler’s order has a repeated axis.
- static legal(order: PyImath.Eulerd.Order) bool
Returns True if the given order is a legal permutation.
- makeNear(arg0: PyImath.Eulerd) None
Adjusts this Euler object so that its components differ from target by as little as possible. This method may not work correctly for Eulers with different orders, or repeated axes or relative orders.
- static nearestRotation(xyzRot: PyImath.V3d, targetXyzRot: PyImath.V3d, order: PyImath.Eulerd.Order = <Order.XYZ: 257>) None
Adjusts xyzRot so that its components differ from targetXyzRot by as little as possible. Note that xyz here really means ijk, because the order must be provided.
- property order
The order of thie Euler object.
- property parityEven
True if this Euler’s order represents a right-handed coordinate system.
- set(axis: PyImath.Eulerd.Axis, relative: bool, parityEven: bool, firstRepeats: bool) None
Set the order of this Euler object.
- setXYZVector(vec: PyImath.V3d) None
Sets the values, reordering the input components if this Euler object is not XYZ-ordered.
- static simpleXYZRotation(xyzRot: PyImath.V3d, targetXyzRot: PyImath.V3d) None
Adjusts xyzRot so that its components differ from targetXyzRot by no more than +-pi.
- toMatrix33() PyImath.M33d
Converts this Euler object to a 3x3 matrix.
- toMatrix44() PyImath.M44d
Converts this Euler object to a 4x4 matrix.
- toQuat() Imath_3_1::Quat<double>
Converts this Euler object to a quaternion.
- toXYZVector() PyImath.V3d
Converts this Euler object to a vector, reordering the angles so that the x rotation comes first, followed by y and z. In cases like XYX ordering, the repeated angle will be in the z component.
- class Imath.Eulerf
Bases:
V3f
- class Axis
Bases:
pybind11_object
Members:
X
Y
Z
- X = <Axis.X: 0>
- Y = <Axis.Y: 1>
- Z = <Axis.Z: 2>
- __init__(value: int) None
- property name
- property value
- class InputLayout
Bases:
pybind11_object
Members:
XYZLayout
IJKLayout
- IJKLayout = <InputLayout.IJKLayout: 1>
- XYZLayout = <InputLayout.XYZLayout: 0>
- __init__(value: int) None
- property name
- property value
- class Order
Bases:
pybind11_object
Members:
XYZ
XZY
YZX
YXZ
ZXY
ZYX
XZX
XYX
YXY
YZY
ZYZ
ZXZ
XYZr
XZYr
YZXr
YXZr
ZXYr
ZYXr
XZXr
XYXr
YXYr
YZYr
ZYZr
ZXZr
Legal
Min
Max
Default
- Default = <Order.XYZ: 257>
- Legal = <Order.Legal: 12561>
- Max = <Order.ZXZ: 8465>
- Min = <Order.ZXYr: 0>
- XYX = <Order.XYX: 273>
- XYXr = <Order.XYXr: 8208>
- XYZ = <Order.XYZ: 257>
- XYZr = <Order.XYZr: 8192>
- XZX = <Order.XZX: 17>
- XZXr = <Order.XZXr: 8464>
- XZY = <Order.XZY: 1>
- XZYr = <Order.XZYr: 8448>
- YXY = <Order.YXY: 4113>
- YXYr = <Order.YXYr: 4368>
- YXZ = <Order.YXZ: 4097>
- YXZr = <Order.YXZr: 4352>
- YZX = <Order.YZX: 4353>
- YZXr = <Order.YZXr: 4096>
- YZY = <Order.YZY: 4369>
- YZYr = <Order.YZYr: 4112>
- ZXY = <Order.ZXY: 8449>
- ZXYr = <Order.ZXYr: 0>
- ZXZ = <Order.ZXZ: 8465>
- ZXZr = <Order.ZXZr: 16>
- ZYX = <Order.ZYX: 8193>
- ZYXr = <Order.ZYXr: 256>
- ZYZ = <Order.ZYZ: 8209>
- ZYZr = <Order.ZYZr: 272>
- __init__(value: int) None
- property name
- property value
- __init__(*args, **kwargs)
Overloaded function.
__init__(self: PyImath.Eulerf, order: PyImath.Eulerf.Order = <Order.XYZ: 257>) -> None
Initializes Euler angles with zero values and given order.
__init__(self: PyImath.Eulerf, vec: PyImath.V3f, order: PyImath.Eulerf.Order, layout: PyImath.Eulerf.InputLayout = <InputLayout.IJKLayout: 1>) -> None
Initializes Euler angles from the given vector, order and input data layout.
__init__(self: PyImath.Eulerf, x: float, y: float, z: float, order: PyImath.Eulerf.Order = <Order.XYZ: 257>, layout: PyImath.Eulerf.InputLayout = <InputLayout.IJKLayout: 1>) -> None
Initializes Euler angles from the three given scalars, read using the given order and layout.
__init__(self: PyImath.Eulerf, other: PyImath.Eulerf, order: PyImath.Eulerf.Order) -> None
Initializes Euler angles from another Euler angles object, using converting to the given order.
__init__(self: PyImath.Eulerf, mat: PyImath.M33f, order: PyImath.Eulerf.Order = <Order.XYZ: 257>) -> None
Initializes Euler angles from the given 3x3 matrix and order.
__init__(self: PyImath.Eulerf, mat: PyImath.M44f, order: PyImath.Eulerf.Order = <Order.XYZ: 257>) -> None
Initializes Euler angles from the given 4x4 matrix and order.
- static angleMod(arg0: float) float
Converts an angle to its equivalent in [-pi, pi].
- angleOrder() Tuple[int, int, int]
Returns a 3-tuple of axis indices for this Euler object.
- extract(*args, **kwargs)
Overloaded function.
extract(self: PyImath.Eulerf, mat: PyImath.M33f) -> None
Sets the Euler values from the given 3x3 matrix. The given matrix must not contain shear or non-uniform scaling.
extract(self: PyImath.Eulerf, mat: PyImath.M44f) -> None
Sets the Euler values from the given 4x4 matrix. The given matrix must not contain shear or non-uniform scaling.
extract(self: PyImath.Eulerf, quat: Imath_3_1::Quat<float>) -> None
Sets the Euler values from the given quaternion.
- property frameStatic
True if this Euler’s order is not a relative order.
- property initialAxis
The initial Axis of this Euler.
- property initialRepeated
True if this Euler’s order has a repeated axis.
- static legal(order: PyImath.Eulerf.Order) bool
Returns True if the given order is a legal permutation.
- makeNear(arg0: PyImath.Eulerf) None
Adjusts this Euler object so that its components differ from target by as little as possible. This method may not work correctly for Eulers with different orders, or repeated axes or relative orders.
- static nearestRotation(xyzRot: PyImath.V3f, targetXyzRot: PyImath.V3f, order: PyImath.Eulerf.Order = <Order.XYZ: 257>) None
Adjusts xyzRot so that its components differ from targetXyzRot by as little as possible. Note that xyz here really means ijk, because the order must be provided.
- property order
The order of thie Euler object.
- property parityEven
True if this Euler’s order represents a right-handed coordinate system.
- set(axis: PyImath.Eulerf.Axis, relative: bool, parityEven: bool, firstRepeats: bool) None
Set the order of this Euler object.
- setXYZVector(vec: PyImath.V3f) None
Sets the values, reordering the input components if this Euler object is not XYZ-ordered.
- static simpleXYZRotation(xyzRot: PyImath.V3f, targetXyzRot: PyImath.V3f) None
Adjusts xyzRot so that its components differ from targetXyzRot by no more than +-pi.
- toMatrix33() PyImath.M33f
Converts this Euler object to a 3x3 matrix.
- toMatrix44() PyImath.M44f
Converts this Euler object to a 4x4 matrix.
- toQuat() Imath_3_1::Quat<float>
Converts this Euler object to a quaternion.
- toXYZVector() PyImath.V3f
Converts this Euler object to a vector, reordering the angles so that the x rotation comes first, followed by y and z. In cases like XYX ordering, the repeated angle will be in the z component.
- class Imath.Frustumd
Bases:
pybind11_object
- DepthToZ(depth: float, zmin: int, zmax: int) int
Unprojects a depth value for this frustum to a world-space z-coordinate.
- ZToDepth(z: int, min: int, max: int) float
Returns the projection of a z-coordinate to depth for this frustum.
- __init__(*args, **kwargs)
Overloaded function.
__init__(self: PyImath.Frustumd) -> None
Initializes a default non-orthographic frustum with clip planes at [0.1, 1000.0] and bounding planes at +-1.0.
__init__(self: PyImath.Frustumd, other: PyImath.Frustumd) -> None
Initializes a Frustum by copying the given argument.
__init__(self: PyImath.Frustumd, nearPlane: float, farPlane: float, left: float, right: float, top: float, bottom: float, ortho: bool = False) -> None
Initializes a Frustum from the given planes.
__init__(self: PyImath.Frustumd, nearPlane: float, farPlane: float, fovx: float, fovy: float, aspect: float) -> None
Initializes a Frustum from the given clip planes, field of view and aspect ratio. Exactly one of fovx and fovy must be non-zero.
- aspect() float
Returns the aspect ratio of this frustum.
- bottom() float
Returns the distance to the bottom plane of this frustum.
- farPlane() float
Returns the distance to the far clip plane of this frustum.
- fovx() float
Returns the horizontal field of view of this frustum.
- fovy() float
Returns the vertical field of view of this frustum.
- left() float
Returns the distance to the left plane of this frustum.
- modifyNearAndFar(nearPlane: float, farPlane: float) None
Set the near and far clip planes of this frustum.
- nearPlane() float
Returns the distance to the near clip plane of this frustum.
- normalizedZToDepth(z: float) float
Returns the projectedof the given normalized z-coordinate by this frustum.
- orthographic() bool
Returns True if this frustum is orthographic.
- projectPointToScreen(point: PyImath.V3d) PyImath.V2d
Returns the projection of a world-space point to the screen-space of this frustum.
- projectionMatrix() PyImath.M44d
Returns the projection matrix defined by this frustum. If ortho() returns True, this will be an orthographic matrix; otherwise it will be a perspective matrix.
- right() float
Returns the distance to the right plane of this frustum.
- screenRadius(point: PyImath.V3d, radius: float) float
Returns the screen-space radius of a sphere of given world-space radius when projected using this frustum.
- set(near: float, far: float, left: float, right: float, top: float, bottom: float, ortho: bool = False) None
Set the planes of this Frustum.
- setOrthographic(ortho: bool) None
Sets whether this frustum is orthographic.
- top() float
Returns the distance to the top plane of this frustum.
- window(left: float, right: float, top: float, bottom: float) PyImath.Frustumd
Given a rectangle in screen-space of this frustum, returns a new frustum whose near clip plane is that rectangle in local space.
- worldRadius(point: PyImath.V3d, radius: float) float
Returns the world-space radius of a sphere of given screen-space radius when unprojected using this frustum.
- class Imath.Frustumf
Bases:
pybind11_object
- DepthToZ(depth: float, zmin: int, zmax: int) int
Unprojects a depth value for this frustum to a world-space z-coordinate.
- ZToDepth(z: int, min: int, max: int) float
Returns the projection of a z-coordinate to depth for this frustum.
- __init__(*args, **kwargs)
Overloaded function.
__init__(self: PyImath.Frustumf) -> None
Initializes a default non-orthographic frustum with clip planes at [0.1, 1000.0] and bounding planes at +-1.0.
__init__(self: PyImath.Frustumf, other: PyImath.Frustumf) -> None
Initializes a Frustum by copying the given argument.
__init__(self: PyImath.Frustumf, nearPlane: float, farPlane: float, left: float, right: float, top: float, bottom: float, ortho: bool = False) -> None
Initializes a Frustum from the given planes.
__init__(self: PyImath.Frustumf, nearPlane: float, farPlane: float, fovx: float, fovy: float, aspect: float) -> None
Initializes a Frustum from the given clip planes, field of view and aspect ratio. Exactly one of fovx and fovy must be non-zero.
- aspect() float
Returns the aspect ratio of this frustum.
- bottom() float
Returns the distance to the bottom plane of this frustum.
- farPlane() float
Returns the distance to the far clip plane of this frustum.
- fovx() float
Returns the horizontal field of view of this frustum.
- fovy() float
Returns the vertical field of view of this frustum.
- left() float
Returns the distance to the left plane of this frustum.
- modifyNearAndFar(nearPlane: float, farPlane: float) None
Set the near and far clip planes of this frustum.
- nearPlane() float
Returns the distance to the near clip plane of this frustum.
- normalizedZToDepth(z: float) float
Returns the projectedof the given normalized z-coordinate by this frustum.
- orthographic() bool
Returns True if this frustum is orthographic.
- projectPointToScreen(point: PyImath.V3f) PyImath.V2f
Returns the projection of a world-space point to the screen-space of this frustum.
- projectionMatrix() PyImath.M44f
Returns the projection matrix defined by this frustum. If ortho() returns True, this will be an orthographic matrix; otherwise it will be a perspective matrix.
- right() float
Returns the distance to the right plane of this frustum.
- screenRadius(point: PyImath.V3f, radius: float) float
Returns the screen-space radius of a sphere of given world-space radius when projected using this frustum.
- set(near: float, far: float, left: float, right: float, top: float, bottom: float, ortho: bool = False) None
Set the planes of this Frustum.
- setOrthographic(ortho: bool) None
Sets whether this frustum is orthographic.
- top() float
Returns the distance to the top plane of this frustum.
- window(left: float, right: float, top: float, bottom: float) PyImath.Frustumf
Given a rectangle in screen-space of this frustum, returns a new frustum whose near clip plane is that rectangle in local space.
- worldRadius(point: PyImath.V3f, radius: float) float
Returns the world-space radius of a sphere of given screen-space radius when unprojected using this frustum.
- class Imath.M33d
Bases:
pybind11_object
- class M33dIterator
Bases:
pybind11_object
Imath Iterator
- __init__(*args, **kwargs)
Overloaded function.
__init__(self: PyImath.M33d) -> None
Initializes an identity matrix.
__init__(self: PyImath.M33d, arg0: float, arg1: float, arg2: float, arg3: float, arg4: float, arg5: float, arg6: float, arg7: float, arg8: float) -> None
__init__(self: PyImath.M33d, arg0: PyImath.M33f) -> None
__init__(self: PyImath.M33d, arg0: PyImath.M33d) -> None
__init__(self: PyImath.M33d, arg0: object, arg1: object, arg2: object) -> None
__init__(self: PyImath.M33d, arg0: object) -> None
- static baseTypeEpsilon() float
Returns a suitable epsilon value for comparing values of the underlying component type.
- static baseTypeLowest() float
Returns the smallest value that can be represented by the underling component type.
- static baseTypeMax() float
Returns the largest value that can be represented by the underling component type.
- static baseTypeSmallest() float
Returns the smallest positive value that can be represented by the underlying component type.
- equalWithAbsError(other: PyImath.M33d, error: float) bool
Returns True if this matrix equals other up to the given absolute error.
- equalWithRelError(other: PyImath.M33d, error: float) bool
Returns True if this matrix equals other up to the given relative error.
- extractAndRemoveScalingAndShear(*args, **kwargs)
Overloaded function.
extractAndRemoveScalingAndShear(self: PyImath.M33d) -> Tuple[PyImath.V2d, float]
Removes scaling and shear from this matrix, returning their values as a 2-tuple.
extractAndRemoveScalingAndShear(self: PyImath.M33d, outScale: PyImath.V2d, outShear: float) -> bool
Remove scaling and shear from this matrix, returning their values in the given out-parameters.
- extractEuler() float
Extract and return Euler angles from this matrix. This assumes that the matrix does not include shear or non-uniform scaling, but does not examine the matrix to verify this assumption. Matrices with shear or non-uniform scaling are likely to produce meaningless results. Therefore, if necessary you should first call removeScalingAndShear().
- extractSHRT(*args, **kwargs)
Overloaded function.
extractSHRT(self: PyImath.M33d, outScale: PyImath.V2d, outShear: float, outRotate: float, outTranslate: PyImath.V2d) -> bool
Extracts scaling, shear, rotation vector and translation from this matrix, returning their values in the corresponding out-parameters.
extractSHRT(self: PyImath.M33d) -> Tuple[PyImath.V2d, float, float, PyImath.V2d]
Returns a 4-tuple containing scale, shear, rotate, translate.
- extractScaling(*args, **kwargs)
Overloaded function.
extractScaling(self: PyImath.M33d) -> PyImath.V2d
Returns the scaling component of this matrix.
extractScaling(self: PyImath.M33d, arg0: PyImath.V2d) -> bool
Returns the scaling component of this matrix.
- extractScalingAndShear(*args, **kwargs)
Overloaded function.
extractScalingAndShear(self: PyImath.M33d) -> Tuple[PyImath.V2d, float]
Returns a 2-tuple containing the scaling and shear of this matrix.
extractScalingAndShear(self: PyImath.M33d, outScale: PyImath.V2d, outShear: float) -> bool
Extract scaling and shear from this matrix, returning them in the given out-parameters.
- gjInverse(raise: bool = False) PyImath.M33d
Returns the Gauss-Jordan inverse of this matrix, handling singular matrices as in gjInvert().
- gjInvert(raise: bool = False) PyImath.M33d
Invert this matrix using the slower but more precise Gauss-Jordan method. If this matrix is singular and raise is True, a RuntimeError is raised; otherwise, if raise if False, an identity matrix is set.
- identity = M33d(1, 0, 0, 0, 1, 0, 0, 0, 1)
- inverse(raise: bool = False) PyImath.M33d
Returns the inverse of this matrix, handling singular matrices as in invert().
- invert(raise: bool = False) PyImath.M33d
Invert this matrix using a faster but less precise method. If this matrix is singular and raise is True, a RuntimeError is raised; otherwise, if raise is False, an identity matrix is set.
- makeIdentity() None
Sets this matrix to the identity.
- multDirMatrix(*args, **kwargs)
Overloaded function.
multDirMatrix(self: PyImath.M33d, v: PyImath.V2d, vOut: PyImath.V2d) -> None
Multiply the direction v by this matrix, storing the result in vOut.
multDirMatrix(self: PyImath.M33d, v: PyImath.V2d) -> PyImath.V2d
Returns the result of multiplying the direction v by this matrix.
- multVecMatrix(*args, **kwargs)
Overloaded function.
multVecMatrix(self: PyImath.M33d, v: PyImath.V2d, vOut: PyImath.V2d) -> None
Multiply the point v by this matrix, storing the result in vOut.
multVecMatrix(self: PyImath.M33d, v: PyImath.V2d) -> PyImath.V2d
Returns the result of multiplying the point v by this matrix.
- negate() PyImath.M33d
Negates this matrix.
- removeScaling() bool
Removes scaling from this matrix.
- removeScalingAndShear() bool
Removes scaling and shear from this matrix.
- rotate(r: float) PyImath.M33d
Cumulatively rotates this matrix by r (in radians).
- sansScaling() PyImath.M33d
Returns a copy of this matrix with scaling removed.
- sansScalingAndShear() PyImath.M33d
Returns a copy of this matrix with scaling and shear removed.
- scale(s: PyImath.V2d) PyImath.M33d
Sets this matrix to scale by the given vector.
- setRotation(r: float) PyImath.M33d
Sets the rotation component of this matrix to r (in radians).
- setScale(*args, **kwargs)
Overloaded function.
setScale(self: PyImath.M33d, s: float) -> PyImath.M33d
Sets this matrix to scale by the given uniform factor.
setScale(self: PyImath.M33d, s: PyImath.V2d) -> PyImath.M33d
Sets this matrix to scale by the given uniform factor
- setShear(*args, **kwargs)
Overloaded function.
setShear(self: PyImath.M33d, xy: float) -> PyImath.M33d
Sets the shear component of this matrix to shear both x- and y-components by xy.
setShear(self: PyImath.M33d, h: PyImath.V2d) -> PyImath.M33d
Sets the shear component of this matrix to shear x for each y-coord by h[0], and to shear y for each x-coord by h[1].
- setTranslation(t: PyImath.V2d) PyImath.M33d
Sets this matrix to translate by the given vector.
- shear(*args, **kwargs)
Overloaded function.
shear(self: PyImath.M33d, xy: float) -> PyImath.M33d
Cumulatively applies shear xy to this matrix in both x and y directions.
shear(self: PyImath.M33d, h: PyImath.V2d) -> PyImath.M33d
Cumulatively shear this matrix in x for each y coord by given factor s[0], and shear y for each x coord by s[1].
- toMatrix44() PyImath.M44d
Returns a 4x4 matrix with this matrix as its upper-left 3x3 block, and other values taken from the 4x4 identity matrix.
- translate(t: PyImath.V2d) PyImath.M33d
Cumulatively translates this matrix by the given vector.
- translation() PyImath.V2d
Returns the translation component of this matrix.
- transpose() PyImath.M33d
Transpose this matrix.
- transposed() PyImath.M33d
Returns the transpose of this matrix.
- class Imath.M33f
Bases:
pybind11_object
- class M33fIterator
Bases:
pybind11_object
Imath Iterator
- __init__(*args, **kwargs)
Overloaded function.
__init__(self: PyImath.M33f) -> None
Initializes an identity matrix.
__init__(self: PyImath.M33f, arg0: float, arg1: float, arg2: float, arg3: float, arg4: float, arg5: float, arg6: float, arg7: float, arg8: float) -> None
__init__(self: PyImath.M33f, arg0: PyImath.M33f) -> None
__init__(self: PyImath.M33f, arg0: Imath_3_1::Matrix33<double>) -> None
__init__(self: PyImath.M33f, arg0: object, arg1: object, arg2: object) -> None
__init__(self: PyImath.M33f, arg0: object) -> None
- static baseTypeEpsilon() float
Returns a suitable epsilon value for comparing values of the underlying component type.
- static baseTypeLowest() float
Returns the smallest value that can be represented by the underling component type.
- static baseTypeMax() float
Returns the largest value that can be represented by the underling component type.
- static baseTypeSmallest() float
Returns the smallest positive value that can be represented by the underlying component type.
- equalWithAbsError(other: PyImath.M33f, error: float) bool
Returns True if this matrix equals other up to the given absolute error.
- equalWithRelError(other: PyImath.M33f, error: float) bool
Returns True if this matrix equals other up to the given relative error.
- extractAndRemoveScalingAndShear(*args, **kwargs)
Overloaded function.
extractAndRemoveScalingAndShear(self: PyImath.M33f) -> Tuple[PyImath.V2f, float]
Removes scaling and shear from this matrix, returning their values as a 2-tuple.
extractAndRemoveScalingAndShear(self: PyImath.M33f, outScale: PyImath.V2f, outShear: float) -> bool
Remove scaling and shear from this matrix, returning their values in the given out-parameters.
- extractEuler() float
Extract and return Euler angles from this matrix. This assumes that the matrix does not include shear or non-uniform scaling, but does not examine the matrix to verify this assumption. Matrices with shear or non-uniform scaling are likely to produce meaningless results. Therefore, if necessary you should first call removeScalingAndShear().
- extractSHRT(*args, **kwargs)
Overloaded function.
extractSHRT(self: PyImath.M33f, outScale: PyImath.V2f, outShear: float, outRotate: float, outTranslate: PyImath.V2f) -> bool
Extracts scaling, shear, rotation vector and translation from this matrix, returning their values in the corresponding out-parameters.
extractSHRT(self: PyImath.M33f) -> Tuple[PyImath.V2f, float, float, PyImath.V2f]
Returns a 4-tuple containing scale, shear, rotate, translate.
- extractScaling(*args, **kwargs)
Overloaded function.
extractScaling(self: PyImath.M33f) -> PyImath.V2f
Returns the scaling component of this matrix.
extractScaling(self: PyImath.M33f, arg0: PyImath.V2f) -> bool
Returns the scaling component of this matrix.
- extractScalingAndShear(*args, **kwargs)
Overloaded function.
extractScalingAndShear(self: PyImath.M33f) -> Tuple[PyImath.V2f, float]
Returns a 2-tuple containing the scaling and shear of this matrix.
extractScalingAndShear(self: PyImath.M33f, outScale: PyImath.V2f, outShear: float) -> bool
Extract scaling and shear from this matrix, returning them in the given out-parameters.
- gjInverse(raise: bool = False) PyImath.M33f
Returns the Gauss-Jordan inverse of this matrix, handling singular matrices as in gjInvert().
- gjInvert(raise: bool = False) PyImath.M33f
Invert this matrix using the slower but more precise Gauss-Jordan method. If this matrix is singular and raise is True, a RuntimeError is raised; otherwise, if raise if False, an identity matrix is set.
- identity = M33f(1, 0, 0, 0, 1, 0, 0, 0, 1)
- inverse(raise: bool = False) PyImath.M33f
Returns the inverse of this matrix, handling singular matrices as in invert().
- invert(raise: bool = False) PyImath.M33f
Invert this matrix using a faster but less precise method. If this matrix is singular and raise is True, a RuntimeError is raised; otherwise, if raise is False, an identity matrix is set.
- makeIdentity() None
Sets this matrix to the identity.
- multDirMatrix(*args, **kwargs)
Overloaded function.
multDirMatrix(self: PyImath.M33f, v: PyImath.V2f, vOut: PyImath.V2f) -> None
Multiply the direction v by this matrix, storing the result in vOut.
multDirMatrix(self: PyImath.M33f, v: PyImath.V2f) -> PyImath.V2f
Returns the result of multiplying the direction v by this matrix.
- multVecMatrix(*args, **kwargs)
Overloaded function.
multVecMatrix(self: PyImath.M33f, v: PyImath.V2f, vOut: PyImath.V2f) -> None
Multiply the point v by this matrix, storing the result in vOut.
multVecMatrix(self: PyImath.M33f, v: PyImath.V2f) -> PyImath.V2f
Returns the result of multiplying the point v by this matrix.
- negate() PyImath.M33f
Negates this matrix.
- removeScaling() bool
Removes scaling from this matrix.
- removeScalingAndShear() bool
Removes scaling and shear from this matrix.
- rotate(r: float) PyImath.M33f
Cumulatively rotates this matrix by r (in radians).
- sansScaling() PyImath.M33f
Returns a copy of this matrix with scaling removed.
- sansScalingAndShear() PyImath.M33f
Returns a copy of this matrix with scaling and shear removed.
- scale(s: PyImath.V2f) PyImath.M33f
Sets this matrix to scale by the given vector.
- setRotation(r: float) PyImath.M33f
Sets the rotation component of this matrix to r (in radians).
- setScale(*args, **kwargs)
Overloaded function.
setScale(self: PyImath.M33f, s: float) -> PyImath.M33f
Sets this matrix to scale by the given uniform factor.
setScale(self: PyImath.M33f, s: PyImath.V2f) -> PyImath.M33f
Sets this matrix to scale by the given uniform factor
- setShear(*args, **kwargs)
Overloaded function.
setShear(self: PyImath.M33f, xy: float) -> PyImath.M33f
Sets the shear component of this matrix to shear both x- and y-components by xy.
setShear(self: PyImath.M33f, h: PyImath.V2f) -> PyImath.M33f
Sets the shear component of this matrix to shear x for each y-coord by h[0], and to shear y for each x-coord by h[1].
- setTranslation(t: PyImath.V2f) PyImath.M33f
Sets this matrix to translate by the given vector.
- shear(*args, **kwargs)
Overloaded function.
shear(self: PyImath.M33f, xy: float) -> PyImath.M33f
Cumulatively applies shear xy to this matrix in both x and y directions.
shear(self: PyImath.M33f, h: PyImath.V2f) -> PyImath.M33f
Cumulatively shear this matrix in x for each y coord by given factor s[0], and shear y for each x coord by s[1].
- toMatrix44() PyImath.M44f
Returns a 4x4 matrix with this matrix as its upper-left 3x3 block, and other values taken from the 4x4 identity matrix.
- translate(t: PyImath.V2f) PyImath.M33f
Cumulatively translates this matrix by the given vector.
- translation() PyImath.V2f
Returns the translation component of this matrix.
- transpose() PyImath.M33f
Transpose this matrix.
- transposed() PyImath.M33f
Returns the transpose of this matrix.
- class Imath.M44d
Bases:
pybind11_object
- class M44dIterator
Bases:
pybind11_object
Imath Iterator
- __init__(*args, **kwargs)
Overloaded function.
__init__(self: PyImath.M44d) -> None
Initializes an identity matrix.
__init__(self: PyImath.M44d, mat: Imath_3_1::Matrix33<double>, vec: PyImath.V3d) -> None
Initializes a 4x4 matrix from a 3x3 matrix and column vector.
__init__(self: PyImath.M44d, arg0: PyImath.M44f) -> None
__init__(self: PyImath.M44d, arg0: PyImath.M44d) -> None
__init__(self: PyImath.M44d, arg0: float, arg1: float, arg2: float, arg3: float, arg4: float, arg5: float, arg6: float, arg7: float, arg8: float, arg9: float, arg10: float, arg11: float, arg12: float, arg13: float, arg14: float, arg15: float) -> None
__init__(self: PyImath.M44d, col0: object, col1: object, col2: object, col3: object) -> None
Initializes a 4x4 from four iterables, viewed as column vectors.
__init__(self: PyImath.M44d, iter: object) -> None
Initializes a 4x4 matrix from an iterable.
- static alignZAxisWithTargetDir(arg0: PyImath.V3d, arg1: PyImath.V3d) PyImath.M44d
Returns a matrix that rotates the z-axis so that it points towards targetDir. You must also specify the up vector upDir.
- The following degenerate cases are handled:
when toDir and upDir are parallel or opposite;
when any of the given vectors have zero length.
- static baseTypeEpsilon() float
Returns a suitable epsilon value for comparing values of the underlying component type.
- static baseTypeLowest() float
Returns the smallest value that can be represented by the underling component type.
- static baseTypeMax() float
Returns the largest value that can be represented by the underling component type.
- static baseTypeSmallest() float
Returns the smallest positive value that can be represented by the underlying component type.
- equalWithAbsError(other: PyImath.M44d, error: float) bool
Returns True if this matrix equals other up to the given absolute error.
- equalWithRelError(other: PyImath.M44d, error: float) bool
Returns True if this matrix equals other up to the given relative error.
- extractAndRemoveScalingAndShear(*args, **kwargs)
Overloaded function.
extractAndRemoveScalingAndShear(self: PyImath.M44d) -> Tuple[PyImath.V3d, PyImath.V3d]
Removes scaling and shear from this matrix, returning their values as a 2-tuple.
extractAndRemoveScalingAndShear(self: PyImath.M44d, outScale: PyImath.V3d, outShear: PyImath.V3d) -> bool
Removes scaling and shear from this matrix, returning their values in out-parameters outScale and outShear.
- extractEulerXYZ(*args, **kwargs)
Overloaded function.
extractEulerXYZ(self: PyImath.M44d, outAngles: PyImath.V3d) -> None
Extracts XYZ Euler angles from this matrix to outAngles. This function assumes that the matrix does not include shear or non-uniform scaling, but it does not examine the matrix to verify this assumption. Matrices with shear or non-uniform scaling are likely to produce meaningless results. Therefore, if necessary you should first call removeScalingAndShear().
extractEulerXYZ(self: PyImath.M44d) -> PyImath.V3d
Returns the XYZ Euler angles from this matrix.
- extractEulerZYX(*args, **kwargs)
Overloaded function.
extractEulerZYX(self: PyImath.M44d, outAngles: PyImath.V3d) -> None
As extractEulerXYZ but with reversed rotation order.
extractEulerZYX(self: PyImath.M44d) -> PyImath.V3d
As extractEulerXYZ but with reserved rotation order.
- extractQuat() Imath_3_1::Quat<double>
Returns a quaternion extracted from this matrix. See extractEulerXYZ() for assumptions.
- extractSHRT(*args, **kwargs)
Overloaded function.
extractSHRT(self: PyImath.M44d, outScale: PyImath.V3d, outShear: PyImath.V3d, outRotate: PyImath.V3d, outTranslate: PyImath.V3d, order: Imath_3_1::Euler<double>::Order) -> bool
Extracts scaling, shearing, rotation vector, and translation to the corresponding out-parameters.
extractSHRT(self: PyImath.M44d) -> Tuple[PyImath.V3d, PyImath.V3d, Imath_3_1::Euler<double>, PyImath.V3d]
Returns a 4-tuple containing scale, shear, rotate, translate.
extractSHRT(self: PyImath.M44d, order: Imath_3_1::Euler<double>::Order) -> Tuple[PyImath.V3d, PyImath.V3d, PyImath.V3d, PyImath.V3d]
Returns a 4-tuple containing scale, shear, rotate, translate.
extractSHRT(self: PyImath.M44d, outScale: PyImath.V3d, outShear: PyImath.V3d, outRotate: PyImath.V3d, outTranslate: PyImath.V3d) -> bool
Extracts scaling, shearing, rotation vector and translation to the corresponding out-parameters.
extractSHRT(self: PyImath.M44d, outScale: PyImath.V3d, outShear: PyImath.V3d, outRotate: Imath_3_1::Euler<double>, outTranslate: PyImath.V3d) -> bool
Extracts scaling, shearing, Euler angles of default order, and translation to the corresponding out-parameters.
- extractScaling(*args, **kwargs)
Overloaded function.
extractScaling(self: PyImath.M44d) -> PyImath.V3d
Returns the scaling component of this matrix.
extractScaling(self: PyImath.M44d, arg0: PyImath.V3d) -> bool
Returns the scaling component of this matrix.
- extractScalingAndShear(*args, **kwargs)
Overloaded function.
extractScalingAndShear(self: PyImath.M44d) -> Tuple[PyImath.V3d, PyImath.V3d]
Returns a 2-tuple containing the scaling and shear of this matrix.
extractScalingAndShear(self: PyImath.M44d, outScale: PyImath.V3d, outShear: PyImath.V3d) -> bool
Returns the scaling and shear of this matrix in out-parameters outScale and outShear
- gjInverse(raise: bool = False) PyImath.M44d
Returns the Gauss-Jordan inverse of this matrix, handling singular matrices as in gjInvert().
- gjInvert(raise: bool = False) PyImath.M44d
Invert this matrix using the slower but more precise Gauss-Jordan method. If this matrix is singular and raise is True, a RuntimeError is raised; otherwise, if raise if False, an identity matrix is set.
- identity = M44d(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1)
- inverse(raise: bool = False) PyImath.M44d
Returns the inverse of this matrix, handling singular matrices as in invert().
- invert(raise: bool = False) PyImath.M44d
Invert this matrix using a faster but less precise method. If this matrix is singular and raise is True, a RuntimeError is raised; otherwise, if raise is False, an identity matrix is set.
- makeIdentity() None
Sets this matrix to the identity.
- multDirMatrix(*args, **kwargs)
Overloaded function.
multDirMatrix(self: PyImath.M44d, v: PyImath.V3d, vOut: PyImath.V3d) -> None
Multiply the direction v by this matrix, storing the result in vOut.
multDirMatrix(self: PyImath.M44d, v: PyImath.V3d) -> PyImath.V3d
Returns the result of multiplying the direction v by this matrix.
- multVecMatrix(*args, **kwargs)
Overloaded function.
multVecMatrix(self: PyImath.M44d, v: PyImath.V3d, vOut: PyImath.V3d) -> None
Multiply the point v by this matrix, storing the result in vOut.
multVecMatrix(self: PyImath.M44d, v: PyImath.V3d) -> PyImath.V3d
Returns the result of multiplying the point v by this matrix.
- static multiply(*args, **kwargs)
Overloaded function.
multiply(a: PyImath.M44d, b: PyImath.M44d, out: PyImath.M44d) -> None
Multiplies matrix a by matrix b and stores the result in out.
multiply(a: PyImath.M44d, b: PyImath.M44d) -> PyImath.M44d
Multiplies matrix a with matrix b and returns the result.
- negate() PyImath.M44d
Negates this matrix.
- removeScaling() bool
Removes scaling from this matrix.
- removeScalingAndShear() bool
Removes scaling and shear from this matrix.
- rotate(angles: PyImath.V3d) PyImath.M44d
Cumulatively rotate this matrix by the given XYZ Euler angles (in radians).
- static rotationMatrix(fromDir: PyImath.V3d, toDir: PyImath.V3d) PyImath.M44d
Returns a matrix that rotates fromDir to toDir.
- static rotationMatrixWithUpDir(fromDir: PyImath.V3d, toDir: PyImath.V3d, upDir: PyImath.V3d) PyImath.M44d
Returns a matrix that rotates fromDir so that it points towards toDir, with a given upDir.
- sansScaling() PyImath.M44d
Returns a copy of this matrix with scaling removed.
- sansScalingAndShear() PyImath.M44d
Returns a copy of this matrix with scaling and shear removed.
- scale(s: PyImath.V3d) PyImath.M44d
Sets this matrix to scale by the given vector.
- setAxisAngle(axis: PyImath.V3d, angle: float) PyImath.M44d
Sets the rotation component of this matrix using the given axis and angle (in radians).
- setEulerAngles(angles: PyImath.V3d) PyImath.M44d
Sets the rotation component of this matrix to the given XYZ Euler angles (in radians).
- setScale(*args, **kwargs)
Overloaded function.
setScale(self: PyImath.M44d, s: float) -> PyImath.M44d
Sets this matrix to scale by the given uniform factor.
setScale(self: PyImath.M44d, s: PyImath.V3d) -> PyImath.M44d
Sets this matrix to scale by the given uniform factor
- setShear(h: PyImath.V3d) PyImath.M44d
- Sets the shear component of this matrix to the given vector. The resulting matrix will:
shear x for each y-coord by a factor of h[0];
shear x for each z-coord by a factor of h[1];
shear y for each z-coord by a factor of h[2].
- setTranslation(t: PyImath.V3d) PyImath.M44d
Sets this matrix to translate by the given vector.
- shear(arg0: PyImath.V3d) PyImath.M44d
- Precomposes this matrix with a shearing matrix that will:
shear x for each y coord. by a factor of h[0];
shear x for each z coord. by a factor of h[1];
shear y for each z coord. by a factor of h[2].
- toMatrix33() Imath_3_1::Matrix33<double>
Returns the upper-left 3x3 matrix.
- translate(t: PyImath.V3d) PyImath.M44d
Cumulatively translates this matrix by the given vector.
- translation() PyImath.V3d
Returns the translation component of this matrix.
- transpose() PyImath.M44d
Transpose this matrix.
- transposed() PyImath.M44d
Returns the transpose of this matrix.
- class Imath.M44f
Bases:
pybind11_object
- class M44fIterator
Bases:
pybind11_object
Imath Iterator
- __init__(*args, **kwargs)
Overloaded function.
__init__(self: PyImath.M44f) -> None
Initializes an identity matrix.
__init__(self: PyImath.M44f, mat: Imath_3_1::Matrix33<float>, vec: PyImath.V3f) -> None
Initializes a 4x4 matrix from a 3x3 matrix and column vector.
__init__(self: PyImath.M44f, arg0: PyImath.M44f) -> None
__init__(self: PyImath.M44f, arg0: Imath_3_1::Matrix44<double>) -> None
__init__(self: PyImath.M44f, arg0: float, arg1: float, arg2: float, arg3: float, arg4: float, arg5: float, arg6: float, arg7: float, arg8: float, arg9: float, arg10: float, arg11: float, arg12: float, arg13: float, arg14: float, arg15: float) -> None
__init__(self: PyImath.M44f, col0: object, col1: object, col2: object, col3: object) -> None
Initializes a 4x4 from four iterables, viewed as column vectors.
__init__(self: PyImath.M44f, iter: object) -> None
Initializes a 4x4 matrix from an iterable.
- static alignZAxisWithTargetDir(arg0: PyImath.V3f, arg1: PyImath.V3f) PyImath.M44f
Returns a matrix that rotates the z-axis so that it points towards targetDir. You must also specify the up vector upDir.
- The following degenerate cases are handled:
when toDir and upDir are parallel or opposite;
when any of the given vectors have zero length.
- static baseTypeEpsilon() float
Returns a suitable epsilon value for comparing values of the underlying component type.
- static baseTypeLowest() float
Returns the smallest value that can be represented by the underling component type.
- static baseTypeMax() float
Returns the largest value that can be represented by the underling component type.
- static baseTypeSmallest() float
Returns the smallest positive value that can be represented by the underlying component type.
- equalWithAbsError(other: PyImath.M44f, error: float) bool
Returns True if this matrix equals other up to the given absolute error.
- equalWithRelError(other: PyImath.M44f, error: float) bool
Returns True if this matrix equals other up to the given relative error.
- extractAndRemoveScalingAndShear(*args, **kwargs)
Overloaded function.
extractAndRemoveScalingAndShear(self: PyImath.M44f) -> Tuple[PyImath.V3f, PyImath.V3f]
Removes scaling and shear from this matrix, returning their values as a 2-tuple.
extractAndRemoveScalingAndShear(self: PyImath.M44f, outScale: PyImath.V3f, outShear: PyImath.V3f) -> bool
Removes scaling and shear from this matrix, returning their values in out-parameters outScale and outShear.
- extractEulerXYZ(*args, **kwargs)
Overloaded function.
extractEulerXYZ(self: PyImath.M44f, outAngles: PyImath.V3f) -> None
Extracts XYZ Euler angles from this matrix to outAngles. This function assumes that the matrix does not include shear or non-uniform scaling, but it does not examine the matrix to verify this assumption. Matrices with shear or non-uniform scaling are likely to produce meaningless results. Therefore, if necessary you should first call removeScalingAndShear().
extractEulerXYZ(self: PyImath.M44f) -> PyImath.V3f
Returns the XYZ Euler angles from this matrix.
- extractEulerZYX(*args, **kwargs)
Overloaded function.
extractEulerZYX(self: PyImath.M44f, outAngles: PyImath.V3f) -> None
As extractEulerXYZ but with reversed rotation order.
extractEulerZYX(self: PyImath.M44f) -> PyImath.V3f
As extractEulerXYZ but with reserved rotation order.
- extractQuat() Imath_3_1::Quat<float>
Returns a quaternion extracted from this matrix. See extractEulerXYZ() for assumptions.
- extractSHRT(*args, **kwargs)
Overloaded function.
extractSHRT(self: PyImath.M44f, outScale: PyImath.V3f, outShear: PyImath.V3f, outRotate: PyImath.V3f, outTranslate: PyImath.V3f, order: Imath_3_1::Euler<float>::Order) -> bool
Extracts scaling, shearing, rotation vector, and translation to the corresponding out-parameters.
extractSHRT(self: PyImath.M44f) -> Tuple[PyImath.V3f, PyImath.V3f, Imath_3_1::Euler<float>, PyImath.V3f]
Returns a 4-tuple containing scale, shear, rotate, translate.
extractSHRT(self: PyImath.M44f, order: Imath_3_1::Euler<float>::Order) -> Tuple[PyImath.V3f, PyImath.V3f, PyImath.V3f, PyImath.V3f]
Returns a 4-tuple containing scale, shear, rotate, translate.
extractSHRT(self: PyImath.M44f, outScale: PyImath.V3f, outShear: PyImath.V3f, outRotate: PyImath.V3f, outTranslate: PyImath.V3f) -> bool
Extracts scaling, shearing, rotation vector and translation to the corresponding out-parameters.
extractSHRT(self: PyImath.M44f, outScale: PyImath.V3f, outShear: PyImath.V3f, outRotate: Imath_3_1::Euler<float>, outTranslate: PyImath.V3f) -> bool
Extracts scaling, shearing, Euler angles of default order, and translation to the corresponding out-parameters.
- extractScaling(*args, **kwargs)
Overloaded function.
extractScaling(self: PyImath.M44f) -> PyImath.V3f
Returns the scaling component of this matrix.
extractScaling(self: PyImath.M44f, arg0: PyImath.V3f) -> bool
Returns the scaling component of this matrix.
- extractScalingAndShear(*args, **kwargs)
Overloaded function.
extractScalingAndShear(self: PyImath.M44f) -> Tuple[PyImath.V3f, PyImath.V3f]
Returns a 2-tuple containing the scaling and shear of this matrix.
extractScalingAndShear(self: PyImath.M44f, outScale: PyImath.V3f, outShear: PyImath.V3f) -> bool
Returns the scaling and shear of this matrix in out-parameters outScale and outShear
- gjInverse(raise: bool = False) PyImath.M44f
Returns the Gauss-Jordan inverse of this matrix, handling singular matrices as in gjInvert().
- gjInvert(raise: bool = False) PyImath.M44f
Invert this matrix using the slower but more precise Gauss-Jordan method. If this matrix is singular and raise is True, a RuntimeError is raised; otherwise, if raise if False, an identity matrix is set.
- identity = M44f(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1)
- inverse(raise: bool = False) PyImath.M44f
Returns the inverse of this matrix, handling singular matrices as in invert().
- invert(raise: bool = False) PyImath.M44f
Invert this matrix using a faster but less precise method. If this matrix is singular and raise is True, a RuntimeError is raised; otherwise, if raise is False, an identity matrix is set.
- makeIdentity() None
Sets this matrix to the identity.
- multDirMatrix(*args, **kwargs)
Overloaded function.
multDirMatrix(self: PyImath.M44f, v: PyImath.V3f, vOut: PyImath.V3f) -> None
Multiply the direction v by this matrix, storing the result in vOut.
multDirMatrix(self: PyImath.M44f, v: PyImath.V3f) -> PyImath.V3f
Returns the result of multiplying the direction v by this matrix.
- multVecMatrix(*args, **kwargs)
Overloaded function.
multVecMatrix(self: PyImath.M44f, v: PyImath.V3f, vOut: PyImath.V3f) -> None
Multiply the point v by this matrix, storing the result in vOut.
multVecMatrix(self: PyImath.M44f, v: PyImath.V3f) -> PyImath.V3f
Returns the result of multiplying the point v by this matrix.
- static multiply(*args, **kwargs)
Overloaded function.
multiply(a: PyImath.M44f, b: PyImath.M44f, out: PyImath.M44f) -> None
Multiplies matrix a by matrix b and stores the result in out.
multiply(a: PyImath.M44f, b: PyImath.M44f) -> PyImath.M44f
Multiplies matrix a with matrix b and returns the result.
- negate() PyImath.M44f
Negates this matrix.
- removeScaling() bool
Removes scaling from this matrix.
- removeScalingAndShear() bool
Removes scaling and shear from this matrix.
- rotate(angles: PyImath.V3f) PyImath.M44f
Cumulatively rotate this matrix by the given XYZ Euler angles (in radians).
- static rotationMatrix(fromDir: PyImath.V3f, toDir: PyImath.V3f) PyImath.M44f
Returns a matrix that rotates fromDir to toDir.
- static rotationMatrixWithUpDir(fromDir: PyImath.V3f, toDir: PyImath.V3f, upDir: PyImath.V3f) PyImath.M44f
Returns a matrix that rotates fromDir so that it points towards toDir, with a given upDir.
- sansScaling() PyImath.M44f
Returns a copy of this matrix with scaling removed.
- sansScalingAndShear() PyImath.M44f
Returns a copy of this matrix with scaling and shear removed.
- scale(s: PyImath.V3f) PyImath.M44f
Sets this matrix to scale by the given vector.
- setAxisAngle(axis: PyImath.V3f, angle: float) PyImath.M44f
Sets the rotation component of this matrix using the given axis and angle (in radians).
- setEulerAngles(angles: PyImath.V3f) PyImath.M44f
Sets the rotation component of this matrix to the given XYZ Euler angles (in radians).
- setScale(*args, **kwargs)
Overloaded function.
setScale(self: PyImath.M44f, s: float) -> PyImath.M44f
Sets this matrix to scale by the given uniform factor.
setScale(self: PyImath.M44f, s: PyImath.V3f) -> PyImath.M44f
Sets this matrix to scale by the given uniform factor
- setShear(h: PyImath.V3f) PyImath.M44f
- Sets the shear component of this matrix to the given vector. The resulting matrix will:
shear x for each y-coord by a factor of h[0];
shear x for each z-coord by a factor of h[1];
shear y for each z-coord by a factor of h[2].
- setTranslation(t: PyImath.V3f) PyImath.M44f
Sets this matrix to translate by the given vector.
- shear(arg0: PyImath.V3f) PyImath.M44f
- Precomposes this matrix with a shearing matrix that will:
shear x for each y coord. by a factor of h[0];
shear x for each z coord. by a factor of h[1];
shear y for each z coord. by a factor of h[2].
- toMatrix33() Imath_3_1::Matrix33<float>
Returns the upper-left 3x3 matrix.
- translate(t: PyImath.V3f) PyImath.M44f
Cumulatively translates this matrix by the given vector.
- translation() PyImath.V3f
Returns the translation component of this matrix.
- transpose() PyImath.M44f
Transpose this matrix.
- transposed() PyImath.M44f
Returns the transpose of this matrix.
- class Imath.Quatd
Bases:
pybind11_object
- class QuatdIterator
Bases:
pybind11_object
Imath Iterator
- __init__(*args, **kwargs)
Overloaded function.
__init__(self: PyImath.Quatd) -> None
Initializes a quaternion to the real unit 1.0.
__init__(self: PyImath.Quatd, r: float, vx: float, vy: float, vz: float) -> None
Initializes a quaternion from the given scalars.
__init__(self: PyImath.Quatd, r: float, v: PyImath.V3d) -> None
Initializes a quaternion from a scalar and vector.
__init__(self: PyImath.Quatd, iter: object) -> None
Initializes a quaternion from an iterable.
- property angle
- property axis
- exp() PyImath.Quatd
Returns the exponential of this quaternion.
- identity = Quatd(1, 0, 0, 0)
- intermediate(qa: PyImath.Quatd, qb: PyImath.Quatd) PyImath.Quatd
Computes the intermediate of self with respect to qa and qb.
From advanced Animation and Rendering Techniques by Watt and Watt, Page 366: computing the inner quadrangle points (qa and qb) to guarantee tangent continuity.
- inverse() PyImath.Quatd
Returns the inverse of this quaternion.
- invert() PyImath.Quatd
Invert this quaternion.
- length() float
Returns the length of this quaternion.
- log() PyImath.Quatd
Returns the logarithm of this quaternion.
- normalize() PyImath.Quatd
Normalize thie quaternion.
- normalized() PyImath.Quatd
Returns a copy of this quaternion that has been normalized.
- property r
The real part of this quaternion.
- setAxisAngle(axis: PyImath.V3d, angle: float) PyImath.Quatd
Sets this quaternion from the given axis and angle.
- setRotation(fromDir: PyImath.V3d, toDir: PyImath.V3d) PyImath.Quatd
Sets this quaternion so that it rotates from fromDir to toDir.
- slerp(q2: PyImath.Quatd, t: float) PyImath.Quatd
Computes the spherical linear interpolation of this quaternion and q2 by factor t.
NOTE: Assumes self and q2 are normalized and that 0 <= t <= 1.
This method does not interpolate along the shortest arc between self and q2. If you desire interpolation along the shortest arc, then consider flipping the second quaternion explicitly before calling slerp. The implementation of squad() depends on a slerp() that interpolates as is, without the automatic flipping.
- spline(q1: PyImath.Quatd, q2: PyImath.Quatd, q3: PyImath.Quatd, t: float) PyImath.Quatd
Computes the spherical cubic spline iterpolation of self with respect to q1, q2 and q3 at parameter t.
Spherical Cubic Spline Interpolation - from Advanced Animation and Rendering Techniques by Watt and Watt, Page 366: A spherical curve is constructed using three spherical linear interpolations of a quadrangle of unit quaternions: q1, qa, qb, q2. Given a set of quaternion keys: self, q1, q2, q3, this routine does the interpolation between q1 and q2 by constructing two intermediate quaternions: qa and qb. The qa and qb are computed by the intermediate function to guarantee continuityof tangents across adjacent cubic segments. The qa represents in-tangent for q1 and the qb represents the out-tangent for q2.
The q1 q2 is the cubic segment being interpolated. The self is from the previous adjacent segment and q3 is from the next adjacent segment. The self and q3 are used in computing qa and qb.
- squad(qa: PyImath.Quatd, qb: PyImath.Quatd, q2: PyImath.Quatd, t: float) PyImath.Quatd
Computes the spherical quadrangle interpolation of self with respect to qa, qb and q2.
Spherical Quadrangle Interpolation - from Advanced Animation and Rendering Techniques by Watt and Watt, Page 366: It constructs a spherical cubic interpolation as a series of three spherical linear interpolations of a quadrangle of unit quaternions.
- toMatrix33() PyImath.M33d
Convert this quaternion to a 3x3 rotation matrix.
- toMatrix44() PyImath.M44d
Convert this quaternion to a 4x4 rotation matrix.
- property v
The imaginary part of this quaternion.
- class Imath.Quatf
Bases:
pybind11_object
- class QuatfIterator
Bases:
pybind11_object
Imath Iterator
- __init__(*args, **kwargs)
Overloaded function.
__init__(self: PyImath.Quatf) -> None
Initializes a quaternion to the real unit 1.0.
__init__(self: PyImath.Quatf, r: float, vx: float, vy: float, vz: float) -> None
Initializes a quaternion from the given scalars.
__init__(self: PyImath.Quatf, r: float, v: PyImath.V3f) -> None
Initializes a quaternion from a scalar and vector.
__init__(self: PyImath.Quatf, iter: object) -> None
Initializes a quaternion from an iterable.
- property angle
- property axis
- exp() PyImath.Quatf
Returns the exponential of this quaternion.
- identity = Quatf(1, 0, 0, 0)
- intermediate(qa: PyImath.Quatf, qb: PyImath.Quatf) PyImath.Quatf
Computes the intermediate of self with respect to qa and qb.
From advanced Animation and Rendering Techniques by Watt and Watt, Page 366: computing the inner quadrangle points (qa and qb) to guarantee tangent continuity.
- inverse() PyImath.Quatf
Returns the inverse of this quaternion.
- invert() PyImath.Quatf
Invert this quaternion.
- length() float
Returns the length of this quaternion.
- log() PyImath.Quatf
Returns the logarithm of this quaternion.
- normalize() PyImath.Quatf
Normalize thie quaternion.
- normalized() PyImath.Quatf
Returns a copy of this quaternion that has been normalized.
- property r
The real part of this quaternion.
- setAxisAngle(axis: PyImath.V3f, angle: float) PyImath.Quatf
Sets this quaternion from the given axis and angle.
- setRotation(fromDir: PyImath.V3f, toDir: PyImath.V3f) PyImath.Quatf
Sets this quaternion so that it rotates from fromDir to toDir.
- slerp(q2: PyImath.Quatf, t: float) PyImath.Quatf
Computes the spherical linear interpolation of this quaternion and q2 by factor t.
NOTE: Assumes self and q2 are normalized and that 0 <= t <= 1.
This method does not interpolate along the shortest arc between self and q2. If you desire interpolation along the shortest arc, then consider flipping the second quaternion explicitly before calling slerp. The implementation of squad() depends on a slerp() that interpolates as is, without the automatic flipping.
- spline(q1: PyImath.Quatf, q2: PyImath.Quatf, q3: PyImath.Quatf, t: float) PyImath.Quatf
Computes the spherical cubic spline iterpolation of self with respect to q1, q2 and q3 at parameter t.
Spherical Cubic Spline Interpolation - from Advanced Animation and Rendering Techniques by Watt and Watt, Page 366: A spherical curve is constructed using three spherical linear interpolations of a quadrangle of unit quaternions: q1, qa, qb, q2. Given a set of quaternion keys: self, q1, q2, q3, this routine does the interpolation between q1 and q2 by constructing two intermediate quaternions: qa and qb. The qa and qb are computed by the intermediate function to guarantee continuityof tangents across adjacent cubic segments. The qa represents in-tangent for q1 and the qb represents the out-tangent for q2.
The q1 q2 is the cubic segment being interpolated. The self is from the previous adjacent segment and q3 is from the next adjacent segment. The self and q3 are used in computing qa and qb.
- squad(qa: PyImath.Quatf, qb: PyImath.Quatf, q2: PyImath.Quatf, t: float) PyImath.Quatf
Computes the spherical quadrangle interpolation of self with respect to qa, qb and q2.
Spherical Quadrangle Interpolation - from Advanced Animation and Rendering Techniques by Watt and Watt, Page 366: It constructs a spherical cubic interpolation as a series of three spherical linear interpolations of a quadrangle of unit quaternions.
- toMatrix33() PyImath.M33f
Convert this quaternion to a 3x3 rotation matrix.
- toMatrix44() PyImath.M44f
Convert this quaternion to a 4x4 rotation matrix.
- property v
The imaginary part of this quaternion.
- class Imath.V2d
Bases:
pybind11_object
- class V2dIterator
Bases:
pybind11_object
Imath Iterator
- __init__(*args, **kwargs)
Overloaded function.
__init__(self: PyImath.V2d) -> None
Initializes a vector with zero values.
__init__(self: PyImath.V2d, value: float) -> None
Initializes a vector with all components set to the given value.
__init__(self: PyImath.V2d, iter: object) -> None
Initializes a vector from an iterable.
__init__(self: PyImath.V2d, x: float, y: float) -> None
Initializes a vector from the given x and y components.
__init__(self: PyImath.V2d, arg0: PyImath.V2d) -> None
__init__(self: PyImath.V2d, arg0: Imath_3_1::Vec2<float>) -> None
__init__(self: PyImath.V2d, arg0: Imath_3_1::Vec2<int>) -> None
__init__(self: PyImath.V2d, arg0: Imath_3_1::Vec2<short>) -> None
- static baseTypeEpsilon() float
Returns an epsilon value suitable for comparing values of the underlying component type.
- static baseTypeLowest() float
Returns the smallest value that can be represented by the underlying component type.
- static baseTypeMax() float
Returns the largest value that can be represented by the underlying component type.
- static baseTypeSmallest() float
Returns the smallest positive value that can be represented by the underlying component type.
- closestVertex(v1: PyImath.V2d, v2: PyImath.V2d, p: PyImath.V2d) PyImath.V2d
Find the vertex of triangle (v0, v1, v2), which is closest to point p.
- cross(other: PyImath.V2d) float
Returns the cross product of this vector and other.
- static dimensions() int
Returns the number of components in this vector type.
- dot(other: PyImath.V2d) float
Returns the dot product of this vector and other.
- equalWithAbsError(other: PyImath.V2d, error: float) bool
Returns True if this vector equals other, up to the given absolute error.
- equalWithRelError(other: PyImath.V2d, error: float) bool
Returns True if this vector equals other, up to the given relative error.
- length() float
Computes the length of this vector.
- length2() float
Computes the squared length of this vector.
- negate() PyImath.V2d
Negate this vector.
- normalize() PyImath.V2d
Normalize this vector. Sets a null vector if length is zero.
- normalizeExc() PyImath.V2d
Normalize this vector, raising a RuntimeError if length is zero.
- normalizeNonNull() PyImath.V2d
Equivalent to self.normalize().
- normalized() PyImath.V2d
Returns a normalized version of this vector, or a null vector if length is zero.
- normalizedExc() PyImath.V2d
Returns a normalized version of this vector, or raises a RuntimeError if length is zero.
- normalizedNonNull() PyImath.V2d
Equivalent to self.normalized().
- orthogonal(t: PyImath.V2d) PyImath.V2d
Returns a vector which is perpendicular to this vector and in the same plane as t.
- static project(s: PyImath.V2d, t: PyImath.V2d) PyImath.V2d
Returns the projection of the vector s onto the vector t.
- projection(s: PyImath.V2d) PyImath.V2d
Returns the projection of this vector onto s.
- reflect(t: PyImath.V2d) PyImath.V2d
Returns the result of reflecting this vector in the plane with normal t.
- property x
The x component of this vector.
- property y
The y component of this vector.
- class Imath.V2f
Bases:
pybind11_object
- class V2fIterator
Bases:
pybind11_object
Imath Iterator
- __init__(*args, **kwargs)
Overloaded function.
__init__(self: PyImath.V2f) -> None
Initializes a vector with zero values.
__init__(self: PyImath.V2f, value: float) -> None
Initializes a vector with all components set to the given value.
__init__(self: PyImath.V2f, iter: object) -> None
Initializes a vector from an iterable.
__init__(self: PyImath.V2f, x: float, y: float) -> None
Initializes a vector from the given x and y components.
__init__(self: PyImath.V2f, arg0: PyImath.V2d) -> None
__init__(self: PyImath.V2f, arg0: PyImath.V2f) -> None
__init__(self: PyImath.V2f, arg0: Imath_3_1::Vec2<int>) -> None
__init__(self: PyImath.V2f, arg0: Imath_3_1::Vec2<short>) -> None
- static baseTypeEpsilon() float
Returns an epsilon value suitable for comparing values of the underlying component type.
- static baseTypeLowest() float
Returns the smallest value that can be represented by the underlying component type.
- static baseTypeMax() float
Returns the largest value that can be represented by the underlying component type.
- static baseTypeSmallest() float
Returns the smallest positive value that can be represented by the underlying component type.
- closestVertex(v1: PyImath.V2f, v2: PyImath.V2f, p: PyImath.V2f) PyImath.V2f
Find the vertex of triangle (v0, v1, v2), which is closest to point p.
- cross(other: PyImath.V2f) float
Returns the cross product of this vector and other.
- static dimensions() int
Returns the number of components in this vector type.
- dot(other: PyImath.V2f) float
Returns the dot product of this vector and other.
- equalWithAbsError(other: PyImath.V2f, error: float) bool
Returns True if this vector equals other, up to the given absolute error.
- equalWithRelError(other: PyImath.V2f, error: float) bool
Returns True if this vector equals other, up to the given relative error.
- length() float
Computes the length of this vector.
- length2() float
Computes the squared length of this vector.
- negate() PyImath.V2f
Negate this vector.
- normalize() PyImath.V2f
Normalize this vector. Sets a null vector if length is zero.
- normalizeExc() PyImath.V2f
Normalize this vector, raising a RuntimeError if length is zero.
- normalizeNonNull() PyImath.V2f
Equivalent to self.normalize().
- normalized() PyImath.V2f
Returns a normalized version of this vector, or a null vector if length is zero.
- normalizedExc() PyImath.V2f
Returns a normalized version of this vector, or raises a RuntimeError if length is zero.
- normalizedNonNull() PyImath.V2f
Equivalent to self.normalized().
- orthogonal(t: PyImath.V2f) PyImath.V2f
Returns a vector which is perpendicular to this vector and in the same plane as t.
- static project(s: PyImath.V2f, t: PyImath.V2f) PyImath.V2f
Returns the projection of the vector s onto the vector t.
- projection(s: PyImath.V2f) PyImath.V2f
Returns the projection of this vector onto s.
- reflect(t: PyImath.V2f) PyImath.V2f
Returns the result of reflecting this vector in the plane with normal t.
- property x
The x component of this vector.
- property y
The y component of this vector.
- class Imath.V2i
Bases:
pybind11_object
- class V2iIterator
Bases:
pybind11_object
Imath Iterator
- __init__(*args, **kwargs)
Overloaded function.
__init__(self: PyImath.V2i) -> None
Initializes a vector with zero values.
__init__(self: PyImath.V2i, value: int) -> None
Initializes a vector with all components set to the given value.
__init__(self: PyImath.V2i, iter: object) -> None
Initializes a vector from an iterable.
__init__(self: PyImath.V2i, x: int, y: int) -> None
Initializes a vector from the given x and y components.
__init__(self: PyImath.V2i, arg0: PyImath.V2d) -> None
__init__(self: PyImath.V2i, arg0: PyImath.V2f) -> None
__init__(self: PyImath.V2i, arg0: PyImath.V2i) -> None
__init__(self: PyImath.V2i, arg0: Imath_3_1::Vec2<short>) -> None
- static baseTypeEpsilon() int
Returns an epsilon value suitable for comparing values of the underlying component type.
- static baseTypeLowest() int
Returns the smallest value that can be represented by the underlying component type.
- static baseTypeMax() int
Returns the largest value that can be represented by the underlying component type.
- static baseTypeSmallest() int
Returns the smallest positive value that can be represented by the underlying component type.
- closestVertex(v1: PyImath.V2i, v2: PyImath.V2i, p: PyImath.V2i) PyImath.V2i
Find the vertex of triangle (v0, v1, v2), which is closest to point p.
- cross(other: PyImath.V2i) int
Returns the cross product of this vector and other.
- static dimensions() int
Returns the number of components in this vector type.
- dot(other: PyImath.V2i) int
Returns the dot product of this vector and other.
- equalWithAbsError(other: PyImath.V2i, error: int) bool
Returns True if this vector equals other, up to the given absolute error.
- equalWithRelError(other: PyImath.V2i, error: int) bool
Returns True if this vector equals other, up to the given relative error.
- negate() PyImath.V2i
Negate this vector.
- property x
The x component of this vector.
- property y
The y component of this vector.
- class Imath.V2s
Bases:
pybind11_object
- class V2sIterator
Bases:
pybind11_object
Imath Iterator
- __init__(*args, **kwargs)
Overloaded function.
__init__(self: PyImath.V2s) -> None
Initializes a vector with zero values.
__init__(self: PyImath.V2s, value: int) -> None
Initializes a vector with all components set to the given value.
__init__(self: PyImath.V2s, iter: object) -> None
Initializes a vector from an iterable.
__init__(self: PyImath.V2s, x: int, y: int) -> None
Initializes a vector from the given x and y components.
__init__(self: PyImath.V2s, arg0: PyImath.V2d) -> None
__init__(self: PyImath.V2s, arg0: PyImath.V2f) -> None
__init__(self: PyImath.V2s, arg0: PyImath.V2i) -> None
__init__(self: PyImath.V2s, arg0: PyImath.V2s) -> None
- static baseTypeEpsilon() int
Returns an epsilon value suitable for comparing values of the underlying component type.
- static baseTypeLowest() int
Returns the smallest value that can be represented by the underlying component type.
- static baseTypeMax() int
Returns the largest value that can be represented by the underlying component type.
- static baseTypeSmallest() int
Returns the smallest positive value that can be represented by the underlying component type.
- closestVertex(v1: PyImath.V2s, v2: PyImath.V2s, p: PyImath.V2s) PyImath.V2s
Find the vertex of triangle (v0, v1, v2), which is closest to point p.
- cross(other: PyImath.V2s) int
Returns the cross product of this vector and other.
- static dimensions() int
Returns the number of components in this vector type.
- dot(other: PyImath.V2s) int
Returns the dot product of this vector and other.
- equalWithAbsError(other: PyImath.V2s, error: int) bool
Returns True if this vector equals other, up to the given absolute error.
- equalWithRelError(other: PyImath.V2s, error: int) bool
Returns True if this vector equals other, up to the given relative error.
- negate() PyImath.V2s
Negate this vector.
- property x
The x component of this vector.
- property y
The y component of this vector.
- class Imath.V3c
Bases:
pybind11_object
- class V3cIterator
Bases:
pybind11_object
Imath Iterator
- __init__(*args, **kwargs)
Overloaded function.
__init__(self: PyImath.V3c) -> None
Initializes a vector with zero values.
__init__(self: PyImath.V3c, value: int) -> None
Initializes a vector with all components set to the given value.
__init__(self: PyImath.V3c, iter: object) -> None
Initializes a vector from an iterable.
__init__(self: PyImath.V3c, x: int, y: int, z: int) -> None
Initializes a vector from the given x, y and z components.
__init__(self: PyImath.V3c, arg0: PyImath.V3d) -> None
__init__(self: PyImath.V3c, arg0: PyImath.V3f) -> None
__init__(self: PyImath.V3c, arg0: PyImath.V3i) -> None
__init__(self: PyImath.V3c, arg0: PyImath.V3s) -> None
- static baseTypeEpsilon() int
Returns an epsilon value suitable for comparing values of the underlying component type.
- static baseTypeLowest() int
Returns the smallest value that can be represented by the underlying component type.
- static baseTypeMax() int
Returns the largest value that can be represented by the underlying component type.
- static baseTypeSmallest() int
Returns the smallest positive value that can be represented by the underlying component type.
- closestVertex(v1: PyImath.V3c, v2: PyImath.V3c, p: PyImath.V3c) PyImath.V3c
Find the vertex of triangle (v0, v1, v2), which is closest to point p.
- cross(other: PyImath.V3c) PyImath.V3c
Returns the cross product of this vector and other.
- static dimensions() int
Returns the number of components in this vector type.
- dot(other: PyImath.V3c) int
Returns the dot product of this vector and other.
- equalWithAbsError(other: PyImath.V3c, error: int) bool
Returns True if this vector equals other, up to the given absolute error.
- equalWithRelError(other: PyImath.V3c, error: int) bool
Returns True if this vector equals other, up to the given relative error.
- negate() PyImath.V3c
Negate this vector.
- property x
The x component of this vector.
- property y
The y component of this vector.
- property z
The z component of this vector
- class Imath.V3d
Bases:
pybind11_object
- class V3dIterator
Bases:
pybind11_object
Imath Iterator
- __init__(*args, **kwargs)
Overloaded function.
__init__(self: PyImath.V3d) -> None
Initializes a vector with zero values.
__init__(self: PyImath.V3d, value: float) -> None
Initializes a vector with all components set to the given value.
__init__(self: PyImath.V3d, iter: object) -> None
Initializes a vector from an iterable.
__init__(self: PyImath.V3d, x: float, y: float, z: float) -> None
Initializes a vector from the given x, y and z components.
__init__(self: PyImath.V3d, arg0: PyImath.V3d) -> None
__init__(self: PyImath.V3d, arg0: Imath_3_1::Vec3<float>) -> None
__init__(self: PyImath.V3d, arg0: Imath_3_1::Vec3<int>) -> None
__init__(self: PyImath.V3d, arg0: Imath_3_1::Vec3<short>) -> None
- static baseTypeEpsilon() float
Returns an epsilon value suitable for comparing values of the underlying component type.
- static baseTypeLowest() float
Returns the smallest value that can be represented by the underlying component type.
- static baseTypeMax() float
Returns the largest value that can be represented by the underlying component type.
- static baseTypeSmallest() float
Returns the smallest positive value that can be represented by the underlying component type.
- closestVertex(v1: PyImath.V3d, v2: PyImath.V3d, p: PyImath.V3d) PyImath.V3d
Find the vertex of triangle (v0, v1, v2), which is closest to point p.
- cross(other: PyImath.V3d) PyImath.V3d
Returns the cross product of this vector and other.
- static dimensions() int
Returns the number of components in this vector type.
- dot(other: PyImath.V3d) float
Returns the dot product of this vector and other.
- equalWithAbsError(other: PyImath.V3d, error: float) bool
Returns True if this vector equals other, up to the given absolute error.
- equalWithRelError(other: PyImath.V3d, error: float) bool
Returns True if this vector equals other, up to the given relative error.
- length() float
Computes the length of this vector.
- length2() float
Computes the squared length of this vector.
- negate() PyImath.V3d
Negate this vector.
- normalize() PyImath.V3d
Normalize this vector. Sets a null vector if length is zero.
- normalizeExc() PyImath.V3d
Normalize this vector, raising a RuntimeError if length is zero.
- normalizeNonNull() PyImath.V3d
Equivalent to self.normalize().
- normalized() PyImath.V3d
Returns a normalized version of this vector, or a null vector if length is zero.
- normalizedExc() PyImath.V3d
Returns a normalized version of this vector, or raises a RuntimeError if length is zero.
- normalizedNonNull() PyImath.V3d
Equivalent to self.normalized().
- orthogonal(t: PyImath.V3d) PyImath.V3d
Returns a vector which is perpendicular to this vector and in the same plane as t.
- static project(s: PyImath.V3d, t: PyImath.V3d) PyImath.V3d
Returns the projection of the vector s onto the vector t.
- projection(s: PyImath.V3d) PyImath.V3d
Returns the projection of this vector onto s.
- reflect(t: PyImath.V3d) PyImath.V3d
Returns the result of reflecting this vector in the plane with normal t.
- property x
The x component of this vector.
- property y
The y component of this vector.
- property z
The z component of this vector
- class Imath.V3f
Bases:
pybind11_object
- class V3fIterator
Bases:
pybind11_object
Imath Iterator
- __init__(*args, **kwargs)
Overloaded function.
__init__(self: PyImath.V3f) -> None
Initializes a vector with zero values.
__init__(self: PyImath.V3f, value: float) -> None
Initializes a vector with all components set to the given value.
__init__(self: PyImath.V3f, iter: object) -> None
Initializes a vector from an iterable.
__init__(self: PyImath.V3f, x: float, y: float, z: float) -> None
Initializes a vector from the given x, y and z components.
__init__(self: PyImath.V3f, arg0: PyImath.V3d) -> None
__init__(self: PyImath.V3f, arg0: PyImath.V3f) -> None
__init__(self: PyImath.V3f, arg0: Imath_3_1::Vec3<int>) -> None
__init__(self: PyImath.V3f, arg0: Imath_3_1::Vec3<short>) -> None
- static baseTypeEpsilon() float
Returns an epsilon value suitable for comparing values of the underlying component type.
- static baseTypeLowest() float
Returns the smallest value that can be represented by the underlying component type.
- static baseTypeMax() float
Returns the largest value that can be represented by the underlying component type.
- static baseTypeSmallest() float
Returns the smallest positive value that can be represented by the underlying component type.
- closestVertex(v1: PyImath.V3f, v2: PyImath.V3f, p: PyImath.V3f) PyImath.V3f
Find the vertex of triangle (v0, v1, v2), which is closest to point p.
- cross(other: PyImath.V3f) PyImath.V3f
Returns the cross product of this vector and other.
- static dimensions() int
Returns the number of components in this vector type.
- dot(other: PyImath.V3f) float
Returns the dot product of this vector and other.
- equalWithAbsError(other: PyImath.V3f, error: float) bool
Returns True if this vector equals other, up to the given absolute error.
- equalWithRelError(other: PyImath.V3f, error: float) bool
Returns True if this vector equals other, up to the given relative error.
- length() float
Computes the length of this vector.
- length2() float
Computes the squared length of this vector.
- negate() PyImath.V3f
Negate this vector.
- normalize() PyImath.V3f
Normalize this vector. Sets a null vector if length is zero.
- normalizeExc() PyImath.V3f
Normalize this vector, raising a RuntimeError if length is zero.
- normalizeNonNull() PyImath.V3f
Equivalent to self.normalize().
- normalized() PyImath.V3f
Returns a normalized version of this vector, or a null vector if length is zero.
- normalizedExc() PyImath.V3f
Returns a normalized version of this vector, or raises a RuntimeError if length is zero.
- normalizedNonNull() PyImath.V3f
Equivalent to self.normalized().
- orthogonal(t: PyImath.V3f) PyImath.V3f
Returns a vector which is perpendicular to this vector and in the same plane as t.
- static project(s: PyImath.V3f, t: PyImath.V3f) PyImath.V3f
Returns the projection of the vector s onto the vector t.
- projection(s: PyImath.V3f) PyImath.V3f
Returns the projection of this vector onto s.
- reflect(t: PyImath.V3f) PyImath.V3f
Returns the result of reflecting this vector in the plane with normal t.
- property x
The x component of this vector.
- property y
The y component of this vector.
- property z
The z component of this vector
- class Imath.V3h
Bases:
pybind11_object
- class V3hIterator
Bases:
pybind11_object
Imath Iterator
- __init__(*args, **kwargs)
Overloaded function.
__init__(self: PyImath.V3h) -> None
Initializes a vector with zero values.
__init__(self: PyImath.V3h, value: Imath_3_1::half) -> None
Initializes a vector with all components set to the given value.
__init__(self: PyImath.V3h, iter: object) -> None
Initializes a vector from an iterable.
__init__(self: PyImath.V3h, x: Imath_3_1::half, y: Imath_3_1::half, z: Imath_3_1::half) -> None
Initializes a vector from the given x, y and z components.
__init__(self: PyImath.V3h, arg0: PyImath.V3d) -> None
__init__(self: PyImath.V3h, arg0: PyImath.V3f) -> None
__init__(self: PyImath.V3h, arg0: PyImath.V3i) -> None
__init__(self: PyImath.V3h, arg0: PyImath.V3s) -> None
- static baseTypeEpsilon() Imath_3_1::half
Returns an epsilon value suitable for comparing values of the underlying component type.
- static baseTypeLowest() Imath_3_1::half
Returns the smallest value that can be represented by the underlying component type.
- static baseTypeMax() Imath_3_1::half
Returns the largest value that can be represented by the underlying component type.
- static baseTypeSmallest() Imath_3_1::half
Returns the smallest positive value that can be represented by the underlying component type.
- closestVertex(v1: PyImath.V3h, v2: PyImath.V3h, p: PyImath.V3h) PyImath.V3h
Find the vertex of triangle (v0, v1, v2), which is closest to point p.
- cross(other: PyImath.V3h) PyImath.V3h
Returns the cross product of this vector and other.
- static dimensions() int
Returns the number of components in this vector type.
- dot(other: PyImath.V3h) Imath_3_1::half
Returns the dot product of this vector and other.
- equalWithAbsError(other: PyImath.V3h, error: Imath_3_1::half) bool
Returns True if this vector equals other, up to the given absolute error.
- equalWithRelError(other: PyImath.V3h, error: Imath_3_1::half) bool
Returns True if this vector equals other, up to the given relative error.
- length() Imath_3_1::half
Computes the length of this vector.
- length2() Imath_3_1::half
Computes the squared length of this vector.
- negate() PyImath.V3h
Negate this vector.
- normalize() PyImath.V3h
Normalize this vector. Sets a null vector if length is zero.
- normalizeExc() PyImath.V3h
Normalize this vector, raising a RuntimeError if length is zero.
- normalizeNonNull() PyImath.V3h
Equivalent to self.normalize().
- normalized() PyImath.V3h
Returns a normalized version of this vector, or a null vector if length is zero.
- normalizedExc() PyImath.V3h
Returns a normalized version of this vector, or raises a RuntimeError if length is zero.
- normalizedNonNull() PyImath.V3h
Equivalent to self.normalized().
- orthogonal(t: PyImath.V3h) PyImath.V3h
Returns a vector which is perpendicular to this vector and in the same plane as t.
- static project(s: PyImath.V3h, t: PyImath.V3h) PyImath.V3h
Returns the projection of the vector s onto the vector t.
- projection(s: PyImath.V3h) PyImath.V3h
Returns the projection of this vector onto s.
- reflect(t: PyImath.V3h) PyImath.V3h
Returns the result of reflecting this vector in the plane with normal t.
- property x
The x component of this vector.
- property y
The y component of this vector.
- property z
The z component of this vector
- class Imath.V3i
Bases:
pybind11_object
- class V3iIterator
Bases:
pybind11_object
Imath Iterator
- __init__(*args, **kwargs)
Overloaded function.
__init__(self: PyImath.V3i) -> None
Initializes a vector with zero values.
__init__(self: PyImath.V3i, value: int) -> None
Initializes a vector with all components set to the given value.
__init__(self: PyImath.V3i, iter: object) -> None
Initializes a vector from an iterable.
__init__(self: PyImath.V3i, x: int, y: int, z: int) -> None
Initializes a vector from the given x, y and z components.
__init__(self: PyImath.V3i, arg0: PyImath.V3d) -> None
__init__(self: PyImath.V3i, arg0: PyImath.V3f) -> None
__init__(self: PyImath.V3i, arg0: PyImath.V3i) -> None
__init__(self: PyImath.V3i, arg0: Imath_3_1::Vec3<short>) -> None
- static baseTypeEpsilon() int
Returns an epsilon value suitable for comparing values of the underlying component type.
- static baseTypeLowest() int
Returns the smallest value that can be represented by the underlying component type.
- static baseTypeMax() int
Returns the largest value that can be represented by the underlying component type.
- static baseTypeSmallest() int
Returns the smallest positive value that can be represented by the underlying component type.
- closestVertex(v1: PyImath.V3i, v2: PyImath.V3i, p: PyImath.V3i) PyImath.V3i
Find the vertex of triangle (v0, v1, v2), which is closest to point p.
- cross(other: PyImath.V3i) PyImath.V3i
Returns the cross product of this vector and other.
- static dimensions() int
Returns the number of components in this vector type.
- dot(other: PyImath.V3i) int
Returns the dot product of this vector and other.
- equalWithAbsError(other: PyImath.V3i, error: int) bool
Returns True if this vector equals other, up to the given absolute error.
- equalWithRelError(other: PyImath.V3i, error: int) bool
Returns True if this vector equals other, up to the given relative error.
- negate() PyImath.V3i
Negate this vector.
- property x
The x component of this vector.
- property y
The y component of this vector.
- property z
The z component of this vector
- class Imath.V3s
Bases:
pybind11_object
- class V3sIterator
Bases:
pybind11_object
Imath Iterator
- __init__(*args, **kwargs)
Overloaded function.
__init__(self: PyImath.V3s) -> None
Initializes a vector with zero values.
__init__(self: PyImath.V3s, value: int) -> None
Initializes a vector with all components set to the given value.
__init__(self: PyImath.V3s, iter: object) -> None
Initializes a vector from an iterable.
__init__(self: PyImath.V3s, x: int, y: int, z: int) -> None
Initializes a vector from the given x, y and z components.
__init__(self: PyImath.V3s, arg0: PyImath.V3d) -> None
__init__(self: PyImath.V3s, arg0: PyImath.V3f) -> None
__init__(self: PyImath.V3s, arg0: PyImath.V3i) -> None
__init__(self: PyImath.V3s, arg0: PyImath.V3s) -> None
- static baseTypeEpsilon() int
Returns an epsilon value suitable for comparing values of the underlying component type.
- static baseTypeLowest() int
Returns the smallest value that can be represented by the underlying component type.
- static baseTypeMax() int
Returns the largest value that can be represented by the underlying component type.
- static baseTypeSmallest() int
Returns the smallest positive value that can be represented by the underlying component type.
- closestVertex(v1: PyImath.V3s, v2: PyImath.V3s, p: PyImath.V3s) PyImath.V3s
Find the vertex of triangle (v0, v1, v2), which is closest to point p.
- cross(other: PyImath.V3s) PyImath.V3s
Returns the cross product of this vector and other.
- static dimensions() int
Returns the number of components in this vector type.
- dot(other: PyImath.V3s) int
Returns the dot product of this vector and other.
- equalWithAbsError(other: PyImath.V3s, error: int) bool
Returns True if this vector equals other, up to the given absolute error.
- equalWithRelError(other: PyImath.V3s, error: int) bool
Returns True if this vector equals other, up to the given relative error.
- negate() PyImath.V3s
Negate this vector.
- property x
The x component of this vector.
- property y
The y component of this vector.
- property z
The z component of this vector
- Imath.abs(arg0: float) float
- Imath.ceil(arg0: float) int
- Imath.clamp(*args, **kwargs)
Overloaded function.
clamp(arg0: float, arg1: float, arg2: float) -> float
clamp(arg0: float, arg1: float, arg2: float) -> float
- Imath.cmp(arg0: float, arg1: float) int
- Imath.cmpt(arg0: float, arg1: float, arg2: float) int
- Imath.divp(arg0: int, arg1: int) int
Integer division where the remainder of x/y is always positive: divp(x,y) == floor (double(x) / double(y))
- Imath.divs(arg0: int, arg1: int) int
Integer division where the remainder of x/y has the same sign as x: divs(x,y) == (abs(x) / abs(y)) * (sign(x) * sign(y))
- Imath.equal(a: float, b: float, error: float) bool
Returns True if a and b are equal up to the given error.
- Imath.finited(arg0: float) bool
Return true if the number is not a NaN or Infinity.
- Imath.finitef(arg0: float) bool
Return true if the number is not a NaN or Infinity.
- Imath.floor(arg0: float) int
- class Imath.half
Bases:
pybind11_object
- __init__(*args, **kwargs)
Overloaded function.
__init__(self: PyImath.half) -> None
Initializes a half with zero value.
__init__(self: PyImath.half, value: float) -> None
Initializes a half from the given float value.
- property bits
The internal bit representation of this half.
- isDenormalized() bool
Returns True if this half is a denormalized number.
- isFinite() bool
Returns True if this half is a normalized number, a denormalized number or zero.
- isInfinity() bool
Returns True if this half is a positive or a negative infinity.
- isNan() bool
Returns True if this half is a NaN.
- isNegative() bool
Returns True if the sign bit of this half is set (negative).
- isNormalized() bool
Returns True if this half is a normalized number.
- isZero() bool
Returns True if this half is zero.
- static negInf() PyImath.half
Returns -infinity.
- static posInf() PyImath.half
Returns +infinity.
- static qNan() PyImath.half
Returns a NaN with the bit pattern 0111111111111111
- round(n: int) PyImath.half
Round to n-bit precision (n should be between 0 and 10). After rounding, the significand’s 10-n least significant bits will be zero.
- static sNan() PyImath.half
Returns a NaN with the bit pattern 0111110111111111
- Imath.iszero(arg0: float, arg1: float) bool
- Imath.lerp(*args, **kwargs)
Overloaded function.
lerp(arg0: float, arg1: float, arg2: float) -> float
lerp(arg0: PyImath.V3f, arg1: PyImath.V3f, arg2: float) -> PyImath.V3f
lerp(arg0: PyImath.V2f, arg1: PyImath.V2f, arg2: float) -> PyImath.V2f
lerp(arg0: PyImath.V3d, arg1: PyImath.V3d, arg2: float) -> PyImath.V3d
lerp(arg0: PyImath.V2d, arg1: PyImath.V2d, arg2: float) -> PyImath.V2d
lerp(arg0: PyImath.V3i, arg1: PyImath.V3i, arg2: int) -> PyImath.V3i
lerp(arg0: PyImath.V2i, arg1: PyImath.V2i, arg2: int) -> PyImath.V2i
lerp(arg0: PyImath.V3s, arg1: PyImath.V3s, arg2: int) -> PyImath.V3s
lerp(arg0: PyImath.V2s, arg1: PyImath.V2s, arg2: int) -> PyImath.V2s
lerp(arg0: PyImath.C4f, arg1: PyImath.C4f, arg2: float) -> PyImath.C4f
lerp(arg0: PyImath.C3f, arg1: PyImath.C3f, arg2: float) -> PyImath.C3f
lerp(arg0: PyImath.C4h, arg1: PyImath.C4h, arg2: PyImath.half) -> PyImath.C4h
lerp(arg0: PyImath.C3h, arg1: PyImath.C3h, arg2: PyImath.half) -> PyImath.C3h
lerp(arg0: PyImath.C4c, arg1: PyImath.C4c, arg2: str) -> PyImath.C4c
lerp(arg0: PyImath.C3c, arg1: PyImath.C3c, arg2: str) -> PyImath.C3c
- Imath.lerpfactor(arg0: float, arg1: float, arg2: float) float
- Imath.modp(arg0: int, arg1: int) int
Integer remainder where the remainder of x/y is always positive: modp(x,y) == x - y * divp(x,y)
- Imath.mods(arg0: int, arg1: int) int
Integer remainder where the remainder of x/y has the same sign as x: mods(x,y) == x - y * divs(x,y)
- Imath.predd(arg0: float) float
Returns double(d-e), where e is the smallest positive number such that double(d-e) != d. Exceptions: If the input value is an infinity or a nan, succf(), predf(), succd(), and predd() all return the input value without changing it.
- Imath.predf(arg0: float) float
Returns float(f-e), where e is the smallest positive number such that float(f-e) != f. Exceptions: If the input value is an infinity or a nan, succf(), predf(), succd(), and predd() all return the input value without changing it.
- Imath.sign(arg0: float) int
- Imath.succd(arg0: float) float
Returns double(d+e), where e is the smallest positive number such that double(d+e) != d. Exceptions: If the input value is an infinity or a nan, succf(), predf(), succd(), and predd() all return the input value without changing it.
- Imath.succf(arg0: float) float
Returns float(f+e), where e is the smallest positive number such that float(f+e) != f. Exceptions: If the input value is an infinity or a nan, succf(), predf(), succd(), and predd() all return the input value without changing it.
- Imath.trunc(arg0: float) int
- Imath.ulerp(arg0: float, arg1: float, arg2: float) float