Environment
Environment lights illuminates objects using an image of light from a real-world environment. This image-based lighting is generated using High Dynamic Range (HDR) images.
To use environment light, you first need to shoot a real life environment as an HDR image. Using the SphericalTransform node, you then convert this image into a spherical mapped image. The sphere is used to surround the 3D objects, so that the mapped image color illuminates them.
Environment light only works with shiny object materials that can reflect the mapped image. It results in a very realistic lighting that makes it easier to integrate the objects into the environment.
See also Light, Spot, Point, Direct, and Relight.
Inputs and Controls
Connection Type |
Connection Name |
Function |
Input |
map |
The transformed HDR image to create the environment light. |
unnamed |
An Axis, a Camera, or another Light node. |
Control (UI) |
Knob (Scripting) |
Default Value |
Function |
Environment Tab |
|||
color |
color |
1 |
Sets the color of the light. |
intensity |
intensity |
1 |
Sets the brightness of the light. |
filter |
filter |
Cubic |
Select the filtering algorithm to use when remapping pixels from their original positions to new positions. This allows you to avoid problems with image quality, particularly in high contrast areas of the frame (where highly aliased, or jaggy, edges may appear if pixels are not filtered and retain their original values). • Impulse - remapped pixels carry their original values. • Cubic - remapped pixels receive some smoothing. • Keys - remapped pixels receive some smoothing, plus minor sharpening (as shown by the negative -y portions of the curve). • Simon - remapped pixels receive some smoothing, plus medium sharpening (as shown by the negative -y portions of the curve). • Rifman - remapped pixels receive some smoothing, plus significant sharpening (as shown by the negative -y portions of the curve). • Mitchell - remapped pixels receive some smoothing, plus blurring to hide pixelation. • Parzen - remapped pixels receive the greatest smoothing of all filters. • Notch - remapped pixels receive flat smoothing (which tends to hide moire patterns). • Lanczos4, Lanczos6, and Sinc4 - remapped pixels receive sharpening which can be useful for scaling down. Lanczos4 provides the least sharpening and Sinc4 the most. |
mirror image |
mirror |
enabled |
Mirror the HDR image attached to the map input. |
blur size |
blur_size |
1 |
Sets the blur size of the HDR image attached to the map input. |
display |
display |
wireframe |
Adjusts the display characteristics of the 3D object. These settings don’t affect the render output of the scene; these are for display purposes only in the 3D Viewer. • off - hides the 3D geometry object. • wireframe - displays only the outlines of the object’s geometry. • solid - displays all geometry with a solid color. • solid+lines - displays the geometry as solid color with the object’s geometry outlines. • textured - displays only the surface texture. • textured+lines - displays the wireframe plus the surface texture. |
selectable |
selectable |
enabled |
When enabled, you can make selections as normal in the Viewer. When disabled, points cannot be selected or changed. |
|
file_menu |
N/A |
Select to import or export a channel file: • Import chan file - import a channel file and transform the object according to the transformation data in the channel file. Channel files contain a set of Cartesian coordinates for every frame of animation in a given shot. You can create and export them using Nuke or 3D tracking software, such as 3D-Equalizer, Maya, or Boujou. • Export chan file - export the translation parameters that you’ve applied to the object as a channel file. This is a useful method of sharing setups between artists. |
|
snap_menu |
N/A |
• Match selection position - the object is snapped to a new position depending on the points selected. • Match selection position, orientation - the object is snapped to a new position and orientation depending on the points selected. • Match selection position, orientation, size - the object is snapped to a new position, orientation, and size depending on the points selected. |
transform order |
xform_order |
SRT |
Sets the operation order for scale (S), rotation (R), and translation (T). The possible operation combinations are SRT, STR, RST, RTS, TSR, TRS. |
rotation order |
rot_order |
ZXY |
Sets the order of rotation. The possible axial combinations are ZXY, XYZ, XZY, YXZ, YZX, ZXY, ZYX. |
translate |
translate |
0, 0, 0 |
Lets you translate the object along the x, y, and z axes. You can also adjust translate values by clicking and dragging the object in the 3D Viewer. |
rotate |
rotate |
0, 0, 0 |
Lets you rotate the object around the x, y, and z axes. You can adjust rotate values by holding down Ctrl/Cmd and dragging in the 3D Viewer. |
scale |
scaling |
1, 1, 1 |
Lets you scale the object on the x, y, and z axes. |
uniform scale |
uniform_scale |
1 |
Lets you scale the object simultaneously on the x, y, and z axes. |
skew |
skew |
0, 0, 0 |
Lets you skew the object on the x, y, and z axes. |
pivot |
pivot |
0, 0, 0 |
When you make changes to a 3D object’s position, scaling, skewing, and rotation, these occur from the location of the object’s origin point or pivot. The pivot x, y, and z controls allow you to offset the pivot point and move it anywhere you like - you can even move it outside of the object. Subsequent transformations applied will then occur relative to the new pivot point location. You can also hold down Ctrl/Cmd+Alt and drag the pivot point to a new location in the 3D Viewer. |
Local Matrix |
|||
specify matrix |
useMatrix |
N/A |
Enable this control to specify matrix values for the object you’re transforming as an alternative to setting transform, scale, skew and pivot values above. |
matrix |
matrix |
N/A |
The matrix displays values from the object’s transform, rotate, scale, skew, and pivot controls. Check specify matrix and copy or drag-and-drop matrix values from another object to apply those values, for example, if you wanted to align objects in a scene. |
World Matrix |
|||
matrix |
matrix |
N/A |
Displays the world or absolute xyz transform of the node in world coordinates. Note: Unlike the Local matrix, you can’t adjust the World matrix manually. |