# Copyright (c) 2010 The Foundry Visionmongers Ltd. All Rights Reserved.
import sys
import math
import nuke_internal as nuke
import _nukemath
#
# Predefined snapping functions.
#
# Lazy functions to call on "thisNode"
[docs]def translateThisNodeToPoints():
return translateToPoints(nuke.thisNode())
[docs]def translateRotateThisNodeToPoints():
return translateRotateToPoints(nuke.thisNode())
[docs]def translateRotateScaleThisNodeToPoints():
return translateRotateScaleToPoints(nuke.thisNode())
# Lazy functions to determine the vertex selection
# These are the external user functions
# Much hard work is done in obtaining the selection in these functions
[docs]def translateToPoints(nodeToSnap):
'''
Translate the specified node to the average position of the current vertex selection in the active viewer.
The nodeToSnap must contain a 'translate' knob and the transform order must be 'SRT'.
@type nodeToSnap: nuke.Node
@param nodeToSnap: Node to translate
'''
return translateSelectionToPoints(nodeToSnap, getSelection())
[docs]def translateRotateToPoints(nodeToSnap):
'''
Translate the specified node to the average position of the current vertex selection in the active viewer
and rotate to the orientation of the (mean squares) best fit plane for the selection.
The nodeToSnap must contain 'translate' and 'rotate' knobs, the transform order must be 'SRT' and the
rotation order must be 'ZXY'.
@type nodeToSnap: nuke.Node
@param nodeToSnap: Node to translate and rotate
'''
return translateRotateSelectionToPoints(nodeToSnap, getSelection())
[docs]def translateRotateScaleToPoints(nodeToSnap):
'''
Translate the specified node to the average position of the current vertex selection in the active viewer,
rotate to the orientation of the (mean squares) best fit plane for the selection
and scale to the extents of the selection.
The nodeToSnap must contain 'translate', 'rotate' and 'scale' knobs, the transform order must be 'SRT' and
the rotation order must be 'ZXY'.
@type nodeToSnap: nuke.Node
@param nodeToSnap: Node to translate, rotate and scale
'''
return translateRotateScaleSelectionToPoints(nodeToSnap, getSelection())
[docs]def translatePivotToPoints(nodeToSnap):
'''
Translate the specified node's Pivot Point to the average position of the
current vertex selection in the active viewer. The nodeToSnap must contain
'translate', 'rotate' and 'pivot_translate' knobs, the transform order must
be 'SRT' and the rotation order must be 'ZXY'.
@type nodeToSnap: nuke.Node
@param nodeToSnap: Node to translate its Pivot Point
'''
return translatePivotSelectionToPoints(nodeToSnap, getSelection())
[docs]def rotatePivotToPoints(nodeToSnap):
'''
Rotate the specified node's Pivot Point to the average of the current vertex
selection normals in the active viewer. The nodeToSnap must contain
'translate', 'rotate', 'pivot_translate' and 'pivot_rotate' knobs, the
transform order must be 'SRT' and the rotation order must be 'ZXY'.
@type nodeToSnap: nuke.Node
@param nodeToSnap: Node to translate its Pivot Point
'''
return rotatePivotSelectionToPoints(nodeToSnap, getSelection())
[docs]def translateRotatePivotToPoints(nodeToSnap):
'''
Translate the specified node's Pivot Point to the average position of the
current vertex selection and rotate the pivot to align Z to match the average
normals in the active viewer. The nodeToSnap must contain 'translate',
'rotate', 'pivot_translate', 'pivot_rotate' and 'pivot_translate' knobs,
the transform order must be 'SRT' and the rotation order must be 'ZXY'.
@type nodeToSnap: nuke.Node
@param nodeToSnap: Node to translate its Pivot Point
'''
return translateRotatePivotSelectionToPoints(nodeToSnap, getSelection())
# Verification wrappers
[docs]def translateSelectionToPoints(nodeToSnap, vertexSelection):
try:
verifyNodeToSnap(nodeToSnap, ["translate", "xform_order", "rot_order"])
verifyVertexSelection(vertexSelection, 1)
translateToPointsVerified(nodeToSnap, vertexSelection)
except ValueError as e:
nuke.message(str(e))
[docs]def rotatePivotSelectionToPoints(nodeToSnap, vertexSelection):
try:
verifyNodeToSnap(nodeToSnap, ["translate", "rotate", "pivot_translate",
"pivot_rotate", "xform_order", "rot_order"])
verifyVertexSelection(vertexSelection, 1)
rotatePivotToPointsVerified(nodeToSnap, vertexSelection)
except ValueError as e:
nuke.message(str(e))
[docs]def translateRotateSelectionToPoints(nodeToSnap, vertexSelection):
try:
verifyNodeToSnap(nodeToSnap, ["translate", "rotate", "xform_order", "rot_order"])
verifyVertexSelection(vertexSelection, 1) # This can use the normal direction
translateRotateToPointsVerified(nodeToSnap, vertexSelection)
except ValueError as e:
nuke.message(str(e))
[docs]def translateRotateScaleSelectionToPoints(nodeToSnap, vertexSelection):
try:
verifyNodeToSnap(nodeToSnap, ["translate", "rotate", "scaling", "xform_order", "rot_order"])
verifyVertexSelection(vertexSelection, 3)
translateRotateScaleToPointsVerified(nodeToSnap, vertexSelection)
except ValueError as e:
nuke.message(str(e))
[docs]def verifyVertexSelection(vertexSelection, minLen):
if len(vertexSelection) < minLen:
raise ValueError('Selection must be at least %d points' % minLen)
[docs]def translatePivotSelectionToPoints(nodeToSnap, vertexSelection):
try:
verifyNodeToSnap(nodeToSnap, ["pivot_translate", "translate", "rotate", "xform_order", "rot_order"])
verifyVertexSelection(vertexSelection, 1)
translatePivotToPointsVerified(nodeToSnap, vertexSelection)
except ValueError as e:
nuke.message(str(e))
[docs]def translateRotatePivotSelectionToPoints(nodeToSnap, vertexSelection):
try:
verifyNodeToSnap(nodeToSnap, ["pivot_rotate", "pivot_translate",
"translate", "rotate", "xform_order",
"rot_order"])
verifyVertexSelection(vertexSelection, 1)
translateRotatePivotToPointsVerified(nodeToSnap, vertexSelection)
except ValueError as e:
nuke.message(str(e))
# Verification functions
[docs]def verifyNodeToSnap(nodeToSnap, knobList):
# Check the knobs
nodeKnobs = nodeToSnap.knobs()
for knob in knobList:
if knob not in nodeKnobs:
raise ValueError('Snap requires "%s" knob' % knob)
# Verify the transform order
verifyNodeOrder(nodeToSnap, "xform_order", "SRT")
# Verify the rotation order as necessary
if "rotate" in knobList:
verifyNodeOrder(nodeToSnap, "rot_order", "ZXY")
[docs]def verifyNodeOrder(node, knobName, orderName):
orderKnob = node.knob(knobName)
# Is there a better way than this?
order = orderKnob.enumName( int(orderKnob.getValue()) )
if orderName != order:
raise ValueError('Snap requires "%s" %s' % (orderName, knobName))
# Info for each vertex
[docs]class VertexInfo:
def __init__(self, objnum, index, value, position, normal):
self.objnum = objnum
self.index = index
self.value = value
self.position = position # This is updated on applying a transform
self.normal = normal
def __lt__(self, other):
'''
The implementation of the Less Than operator serves the purpose of
proper sorting of class instances, where the Object ID, followed by
the Point Index are predominant over the actual position value of
the selected point.
This allows keeping the order of sorted points over changing location
of the points.
'''
if (self.objnum != other.objnum):
return self.objnum < other.objnum
if (self.index != other.index):
return self.index < other.index
return (self.position.x - other.position.x +
self.position.y - other.position.y +
self.position.z - other.position.z) < 0
# Selection container
[docs]class VertexSelection:
def __init__(self):
self.vertexInfoSet = set()
def __len__(self):
return len(self.vertexInfoSet)
# Convenience function to allow direct iteration
def __iter__(self):
# Since a set is not iterable use a generator function
# Don't change the set while iterating!
for info in self.vertexInfoSet:
yield info
def add(self, vertexInfo):
self.vertexInfoSet.add(vertexInfo)
def points(self):
# Generate an iterable list of the positions
points = []
for info in self.vertexInfoSet:
points += [info.position]
return points
def uniquePositionsSorted(self):
# The python bindings for Vector3 do not provide __hash()__ implementation,
# because of that we can't use set() and sorted() directly.
positionToInfoMap = {}
for info in self.vertexInfoSet:
positionToInfoMap[(info.position.x, info.position.y, info.position.z)] = info
uniquePoints = []
for info in sorted(positionToInfoMap.values()):
uniquePoints += [info.position]
return uniquePoints
def indices(self):
# Generate a searchable dictionary of the positions
indices = {}
i = 0
for info in self.vertexInfoSet:
indices[info.index] = i
i += 1
return indices
def translate(self, vector):
for info in self.vertexInfoSet:
info.position = fuzzyVector3Add(info.position, vector)
def inverseRotate(self, vector, order):
#nuke.tprint(vector)
#nuke.tprint(order)
# Create a rotation matrix
m = _nukemath.Matrix3()
m.makeIdentity()
for axis in order:
if axis == "X":
# Apply X rotation
m.rotateX(vector[0])
#nuke.tprint("rotateX: %f" % vector[0])
elif axis == "Y":
# Apply Y rotation
m.rotateY(vector[1])
#nuke.tprint("rotateY: %f" % vector[1])
elif axis == "Z":
# Apply Z rotation
m.rotateZ(vector[2])
#nuke.tprint("rotateZ: %f" % vector[2])
else:
raise ValueError("Invalid rotation axis: %s" % axis)
# Now determine the inverse/transpose matrix
#nuke.tprint(m)
transpose(m)
#nuke.tprint(m)
# Apply the matrix to the vertices
for info in self.vertexInfoSet:
info.position = m * info.position
def scale(self, vector):
for info in self.vertexInfoSet:
info.position[0] *= vector[0]
info.position[1] *= vector[1]
info.position[2] *= vector[2]
[docs]def leastSignificantAxis(vector):
'''
Given a Vector3, returns the least significant axis position, being x, y and
z 0, 1 and 2 respectively.
@type vector: _nukemath.Vector3
@param vector: a Vector3
@return the position of the least significant component of the vector.
'''
least = 0 if vector.x < vector.y else 1
return 2 if vector.z < vector[least] else least
[docs]def fuzzyIsZero(value):
'''
Returns true if a value is very close to zero.
'''
return math.isclose(value, 0.0, abs_tol=0.0001)
[docs]def fuzzyVector3Add(v1, v2):
'''
Adds two vectors ensuring the coordinates are actually 0.0 if they are 0.0001
of zero.
'''
v1 += v2
v1.x = 0.0 if fuzzyIsZero(v1.x) else v1.x
v1.y = 0.0 if fuzzyIsZero(v1.y) else v1.y
v1.z = 0.0 if fuzzyIsZero(v1.z) else v1.z
return v1
# Helper function since Matrix3 has no transpose operation
[docs]def transpose(m):
t = m[0+3*1]
m[0+3*1] = m[1+3*0]
m[1+3*0] = t
t = m[0+3*2]
m[0+3*2] = m[2+3*0]
m[2+3*0] = t
t = m[1+3*2]
m[1+3*2] = m[2+3*1]
m[2+3*1] = t
return
# Core snapping functions
[docs]def translateToPointsVerified(nodeToSnap, vertexSelection):
# Find the average position
centre = calcAveragePosition(vertexSelection)
# Move the nodeToSnap to the average position
nodeToSnap['translate'].setValue(centre)
# Subtract this translation from the vertexSelection
inverseTranslation = -centre
vertexSelection.translate(inverseTranslation)
[docs]def scaleToPointsVerified(nodeToScale, vertexSelection):
# Scale the nodeToScale to fit the bounding box of the selected points
scale = calcBounds(vertexSelection)
nodeToScale['scaling'].setValue(scale)
# Apply the inverse scale to the points
inverseScale = _nukemath.Vector3(1/scale[0], 1/scale[1], 1/scale[2])
vertexSelection.scale(inverseScale)
[docs]def rotateToPointsVerified(nodeToSnap, vertexSelection):
# Get the normal of the points
norm = averageNormal(vertexSelection)
# Calculate the rotation vector
rotationVec = calcRotationVector(vertexSelection, norm)
# Convert to degrees
rotationDegrees = _nukemath.Vector3( math.degrees(rotationVec.x), math.degrees(rotationVec.y), math.degrees(rotationVec.z) )
# Set the node transform
nodeToSnap['rotate'].setValue(rotationDegrees)
# Apply the reverse rotation to the points
vertexSelection.inverseRotate(rotationVec, "YXZ")
[docs]def rotatePivotToPointsVerified(nodeToSnap, vertexSelection):
# The following translation is required to match the behaviour of Geo Match
# to selection. The function translatePivotToPointsVerified is finished with
# this exact operation and the Geo rotations are applied with this offset to
# all vertices, without this, pivot rotation diverges on behaviour from Geo.
# This can be done at the end of translatePivotToPointsVerified because
# unlike Geo options, pivot have rotation only.
vertexSelection.translate(-calcAveragePosition(vertexSelection))
globalNormal = averageNormal(vertexSelection)
pivotRotate = calcRotationVector(vertexSelection, globalNormal)
# Calc rotation vector returns a global rotation vector, in order to transfer
# it to object space as pivot rotation should be we need to remove the object
# rotation from it and then extract the rotation in XYZ order.
R = rotateMatrixZXY(radians(nodeToSnap['rotate'].getValue()))
pivotRotate = _nukemath.Vector3(*((R.inverse() * rotateMatrixZXY(pivotRotate)).rotationsXYZ()))
pt = nodeToSnap['pivot_translate'].getValue()
pivotTranslate = _nukemath.Vector3(pt[0], pt[1], pt[2])
(geoTranslate, geoRotate) = translateRotatePivot(nodeToSnap, pivotTranslate,
pivotRotate)
pivotRotationDegrees = _nukemath.Vector3(math.degrees(pivotRotate[0]),
math.degrees(pivotRotate[1]),
math.degrees(pivotRotate[2]))
nodeToSnap['pivot_rotate'].setValue(pivotRotationDegrees)
nodeToSnap['rotate'].setValue(geoRotate)
nodeToSnap['translate'].setValue(geoTranslate)
[docs]def translateRotatePivotToPointsVerified(nodeToSnap, vertexSelection):
translatePivotToPointsVerified(nodeToSnap, vertexSelection)
rotatePivotToPointsVerified(nodeToSnap, vertexSelection)
[docs]def translatePivotToPointsVerified(nodeToSnap, vertexSelection):
globalPosition = calcAveragePosition(vertexSelection)
transformations = transformMatrix(nodeToSnap)
localPosition = transformations.inverse().transform(globalPosition)
pivotRotate = radians(nodeToSnap['pivot_rotate'].getValue())
(geoTranslate, geoRotate) = translateRotatePivot(nodeToSnap, localPosition,
pivotRotate)
nodeToSnap['translate'].setValue(geoTranslate)
nodeToSnap['rotate'].setValue(geoRotate)
nodeToSnap['pivot_translate'].setValue(localPosition)
[docs]def translateRotateToPointsVerified(nodeToSnap, vertexSelection):
# Note that the vertexSelection positions are updated as we go
translateToPointsVerified(nodeToSnap, vertexSelection)
rotateToPointsVerified(nodeToSnap, vertexSelection)
[docs]def translateRotateScaleToPointsVerified(nodeToSnap, vertexSelection):
# Note that the vertexSelection positions are updated as we go
translateRotateToPointsVerified(nodeToSnap, vertexSelection)
scaleToPointsVerified(nodeToSnap, vertexSelection)
[docs]def checkAllPointCollinear(points):
'''
Iterates through the points the point and checks if all of them are collinear.
The points must contain more than two points.
@type nodeToSnap: Iterable of Vector3
@param nodeToSnap: Points to check
'''
firstPoint = points[0]
secondPoint = points[1]
dirFirstToSecond = secondPoint - firstPoint
dirFirstToSecond.normalize()
for i in range(2, len(points)):
nextPoint = points[i]
dirSecondToNext = nextPoint - secondPoint
dirSecondToNext.normalize()
d = dirFirstToSecond.dot(dirSecondToNext)
if abs(d) < 0.999:
return False
return True
# Get the rotation vector
[docs]def calcRotationVector(vertexSelection, norm):
# Collate a point set from the vertex selection
points = vertexSelection.uniquePositionsSorted()
if len(points) == 0:
return
# Find a best fit plane with three or more non-collinear points
if len(points) > 2 and not checkAllPointCollinear(points):
planeTri = nuke.geo.bestFitPlane(*points)
return planeRotation(planeTri, norm)
w = norm
w.normalize()
if len(points) > 1:
direction = points[1] - points[0]
direction.normalize()
# If normal is zero, we would not be able to properly define a triangle
# for the plane alignment using only the direction. We invent a normal that
# is aligned to the least significant axis of the direction.
if fuzzyIsZero(w.x) and fuzzyIsZero(w.y) and fuzzyIsZero(w.z):
w = _nukemath.Vector3()
w[leastSignificantAxis(direction)] = 1
if abs(w.dot(direction)) < 1.0:
# Choose the axes dependent on the line direction
u = direction
v = w.cross(u)
v.normalize()
# Update w
w = v.cross(u)
# Fabricate a tri (tuple)
planeTri = (_nukemath.Vector3(0.0, 0.0, 0.0), u, v)
return planeRotation(planeTri, norm)
y = _nukemath.Vector3(0.0, 1.0, 0.0)
if abs(w.dot(y)) < 0.5:
v = y
u = w.cross(v)
u.normalize()
# Update v
v = w.cross(u)
else:
u = _nukemath.Vector3(1.0, 0.0, 0.0)
v = w.cross(u)
v.normalize()
# Update v
u = w.cross(v)
# Fabricate a tri (tuple)
planeTri = (_nukemath.Vector3(0.0, 0.0, 0.0), u, v)
rotationVec = planeRotation(planeTri, norm)
# In fact this only handles ZXY (see planeRotation)
rotationVec.z = 0
return rotationVec
#
# Geometric functions
#
[docs]def calcAveragePosition(vertexSelection):
'''
Calculate the average position of all points.
@param points: An iterable sequence of _nukemath.Vector3 objects.
@return: A _nukemath.Vector3 containing the average of all the points.
'''
pos = _nukemath.Vector3(0, 0, 0)
count = 0
for info in vertexSelection:
point = info.position
pos += point
count += 1
if count == 0:
return
pos /= count
return pos
[docs]def calcBounds(vertexSelection):
# Get the bounding box of all the selected points
# Avoid zero size to allow inverse scaling (1/scale)
high = _nukemath.Vector3(1e-20, 1e-20, 1e-20)
low = _nukemath.Vector3(-1e-20, -1e-20, -1e-20)
for info in vertexSelection:
pos = info.position
for i in range(len(pos)):
if pos[i] < low[i]:
low[i] = pos[i]
elif pos[i] > high[i]:
high[i] = pos[i]
bounds = high - low
return bounds
[docs]def planeRotation(tri, norm=None):
'''
Calculate the rotations around the X, Y and Z axes that will align a plane
perpendicular to the Z axis with the given triangle.
@param tri: A list or tuple of 3 _nukemath.Vector3 objects. The 3 points must
describe the plane (i.e. they must not be collinear).
@return: A _nukemath.Vector3 object where the x coordinate is the angle of
rotation around the x axis and so on.
@raise ValueError: if the three points are collinear.
'''
# Get the vectors along two edges of the triangle described by the three points.
a = tri[1] - tri[0]
b = tri[2] - tri[0]
# Calculate the basis vectors for an orthonormal basis, where:
# - u is parallel to a
# - v is perpendicular to u and lies in the plane defined by a and b
# - w is perpendicular to both u and v
u = _nukemath.Vector3(a)
u.normalize()
w = a.cross(b)
w.normalize()
v = w.cross(u)
# If a normal was passed in, check to make sure that the one we're generating
# is aligned close to the same way
if norm != None:
if w.dot(norm) < 0.0:
w.x = -w.x
w.y = -w.y
w.z = -w.z
# Don't mirror!
v.x = -v.x
v.y = -v.y
v.z = -v.z
# Now find the rotation angles necessary to align a card to the uv plane.
m = ( (u[0], v[0], w[0]),
(u[1], v[1], w[1]),
(u[2], v[2], w[2]) )
if abs(m[1][2]) == 1.0:
ry = 0.0
rx = (math.pi / 2.0) * -m[1][2]
rz = math.atan2(-m[0][1], m[0][0])
else:
cosx = math.sqrt(m[0][2] ** 2 + m[2][2] ** 2)
if cosx == 0:
cosx = 1.0
rx = math.atan2(-m[1][2], cosx)
rz = math.atan2(m[1][0] / cosx, m[1][1] / cosx)
ry = math.atan2(m[0][2] / cosx, m[2][2] / cosx)
return _nukemath.Vector3(rx, ry, rz)
#
# Helper functions
#
[docs]def averageNormal(vertexSelection):
'''
averageNormal(selectionThreshold -> _nukemath.Vector3
Return a _nukemath.Vector3 which is the average of the normals of all selected points
'''
if not nuke.activeViewer():
return None
norm = _nukemath.Vector3(0.0, 0.0, 0.0)
for v in vertexSelection:
norm += v.normal
norm.normalize()
return norm
[docs]def anySelectedPoint(selectionThreshold=0.5):
'''
anySelectedPoint(selectionThreshold) -> _nukemath.Vector3
Return a selected point from the active viewer or the first viewer with a selection.
The selectionThreshold parameter is used when working with a soft selection.
Only points with a selection level >= the selection threshold will be returned by this function.
'''
if not nuke.activeViewer():
return None
for n in allNodesWithGeoSelectKnob():
geoSelectKnob = n['geo_select']
sel = geoSelectKnob.getSelection()
objs = geoSelectKnob.getGeometry()
for o in range(len(sel)):
objSelection = sel[o]
for p in range(len(objSelection)):
if objSelection[p] >= selectionThreshold:
pos = objs[o].points()[p]
tPos = objs[o].transform() * _nukemath.Vector4(pos.x, pos.y, pos.z, 1.0)
return _nukemath.Vector3(tPos.x, tPos.y, tPos.z)
return None
[docs]def selectedPoints(selectionThreshold=0.5):
'''
selectedPoints(selectionThreshold) -> iterator
Return an iterator which yields the position of every point currently
selected in the Viewer in turn.
The selectionThreshold parameter is used when working with a soft selection.
Only points with a selection level >= the selection threshold will be
returned by this function.
'''
if not nuke.activeViewer():
return
for info in selectedVertexInfos(selectionThreshold):
yield info.position
[docs]def getSelection(selectionThreshold=0.5):
# Build a VertexSelection from VertexInfos
vertexSelection = VertexSelection()
for info in selectedVertexInfos(selectionThreshold):
vertexSelection.add(info)
return vertexSelection
[docs]def selectedVertexInfos(selectionThreshold=0.5):
'''
selectedVertexInfos(selectionThreshold) -> iterator
Return an iterator which yields a tuple of the index and position of each
point currently selected in the Viewer in turn.
The selectionThreshold parameter is used when working with a soft selection.
Only points with a selection level >= the selection threshold will be
returned by this function.
'''
if not nuke.activeViewer():
return
for n in allNodesWithGeoSelectKnob():
geoSelectKnob = n['geo_select']
sel = geoSelectKnob.getSelection()
objs = geoSelectKnob.getGeometry()
for o in range(len(sel)):
objSelection = sel[o]
objPoints = objs[o].points()
objTransform = objs[o].transform()
for p in range(len(objSelection)):
value = objSelection[p]
if value >= selectionThreshold:
for prim in objs[o].primitives():
for pt in prim.points():
if pt == p:
n = prim.normal()
n = _nukemath.Vector3(n[0], n[1], n[2])
normal = objTransform.vtransform(n)
pos = objPoints[p]
tPos = objTransform * _nukemath.Vector4(pos.x, pos.y, pos.z, 1.0)
yield VertexInfo(o, p, value, _nukemath.Vector3(tPos.x, tPos.y, tPos.z), normal)
[docs]def anySelectedVertexInfo(selectionThreshold=0.5):
'''
anySelectedVertexInfo(selectionThreshold) -> VertexInfo
Returns a single VertexInfo for a selected point. If more than one point is
selected, one of them will be chosen arbitrarily.
The selectionThreshold parameter is used when working with a soft selection.
Only points with a selection level >= the selection threshold will be
returned by this function.
'''
if not nuke.activeViewer():
return None
for n in allNodesWithGeoSelectKnob():
geoSelectKnob = n['geo_select']
sel = geoSelectKnob.getSelection()
objs = geoSelectKnob.getGeometry()
for o in range(len(sel)):
objSelection = sel[o]
objPoints = objs[o].points()
objTransform = objs[o].transform()
for p in range(len(objSelection)):
value = objSelection[p]
if value >= selectionThreshold:
for prim in objs[o].primitives():
for pt in prim.points():
if pt == p:
n = prim.normal()
n = _nukemath.Vector3(n[0], n[1], n[2])
normal = objTransform.vtransform(n)
pos = objPoints[p]
tPos = objTransform * _nukemath.Vector4(pos.x, pos.y, pos.z, 1.0)
return VertexInfo(o, p, value, _nukemath.Vector3(tPos.x, tPos.y, tPos.z), normal)
return None
[docs]def allNodes(node = nuke.root()):
'''
allNodes() -> iterator
Return an iterator which yields all nodes in the current script.
This includes nodes inside groups. They will be returned in top-down,
depth-first order.
'''
yield node
if hasattr(node, "nodes"):
for child in node.nodes():
for n in allNodes(child):
yield n
[docs]def allNodesWithGeoSelectKnob():
if nuke.activeViewer():
preferred_nodes = [n for n in nuke.activeViewer().getGeometryNodes() if 'geo_select' in n.knobs()]
else:
preferred_nodes = []
nodes = preferred_nodes + [n for n in allNodes() if 'geo_select' in n.knobs() and n not in preferred_nodes]
return nodes
[docs]def cameraProjectionMatrix(cameraNode):
'Calculate the projection matrix for the camera based on its knob values.'
# Matrix to transform points into camera-relative coords.
camTransform = cameraNode['transform'].value().inverse()
# Matrix to take the camera projection knobs into account
roll = float(cameraNode['winroll'].getValue())
scale_x, scale_y = [float(v) for v in cameraNode['win_scale'].getValue()]
translate_x, translate_y = [float(v) for v in cameraNode['win_translate'].getValue()]
m = _nukemath.Matrix4()
m.makeIdentity()
m.rotateZ(math.radians(roll))
m.scale(1.0 / scale_x, 1.0 / scale_y, 1.0)
m.translate(-translate_x, -translate_y, 0.0)
# Projection matrix based on the focal length, aperture and clipping planes of the camera
focal_length = float(cameraNode['focal'].getValue())
h_aperture = float(cameraNode['haperture'].getValue())
near = float(cameraNode['near'].getValue())
far = float(cameraNode['far'].getValue())
projection_mode = int(cameraNode['projection_mode'].getValue())
p = _nukemath.Matrix4()
p.projection(focal_length / h_aperture, near, far, projection_mode == 0)
# Matrix to translate the projected points into normalised pixel coords
format = nuke.root()['format'].value()
imageAspect = float(format.height()) / float(format.width())
t = _nukemath.Matrix4()
t.makeIdentity()
t.translate( 1.0, 1.0 - (1.0 - imageAspect / float(format.pixelAspect())), 0.0 )
# Matrix to scale normalised pixel coords into actual pixel coords.
x_scale = float(format.width()) / 2.0
y_scale = x_scale * format.pixelAspect()
s = _nukemath.Matrix4()
s.makeIdentity()
s.scale(x_scale, y_scale, 1.0)
# The projection matrix transforms points into camera coords, modifies based
# on the camera knob values, projects points into clip coords, translates the
# clip coords so that they lie in the range 0,0 - 2,2 instead of -1,-1 - 1,1,
# then scales the clip coords to proper pixel coords.
return s * t * p * m * camTransform
[docs]def projectPoints(camera=None, points=None):
'''
projectPoint(camera, points) -> list of nuke.math.Vector2
Project the given 3D point through the camera to get 2D pixel coordinates.
@param camera: The Camera node or name of the Camera node to use for projecting
the point.
@param points: A list or tuple of either nuke.math.Vector3 or of list/tuples of
three float values representing the 3D points.
@raise ValueError: If camera or point is invalid.
'''
camNode = None
if isinstance(camera, nuke.Node):
camNode = camera
elif isinstance(camera, str):
camNode = nuke.toNode(camera)
else:
raise ValueError("Argument camera must be a node or the name of a node.")
camMatrix = cameraProjectionMatrix(camNode)
if camMatrix == None:
raise RuntimeError("snap3d.cameraProjectionMatrix() returned None for camera.")
if not ( isinstance(points, list) or isinstance(points, tuple) ):
raise ValueError("Argument points must be a list or tuple.")
for point in points:
# Would be nice to not do this for every item but since lists/tuples can
# containg anything...
if isinstance(point, nuke.math.Vector3):
pt = point
elif isinstance(point, list) or isinstance(point, tuple):
pt = nuke.math.Vector3(point[0], point[1], point[2])
else:
raise ValueError("All items in points must be nuke.math.Vector3 or list/tuple of 3 floats.")
tPos = camMatrix * nuke.math.Vector4(pt.x, pt.y, pt.z, 1.0)
yield nuke.math.Vector2(tPos.x / tPos.w, tPos.y / tPos.w)
[docs]def projectPoint(camera=None, point=None):
'''
projectPoint(camera, point) -> nuke.math.Vector2
Project the given 3D point through the camera to get 2D pixel coordinates.
@param camera: The Camera node or name of the Camera node to use for projecting
the point.
@param point: A nuke.math.Vector3 or of list/tuple of three float values
representing the 3D point.
@raise ValueError: If camera or point is invalid.
'''
return next(projectPoints( camera, (point,) ))
[docs]def projectSelectedPoints(cameraName='Camera1'):
'''
projectSelectedPoints(cameraName='Camera1') -> iterator yielding nuke.math.Vector2
Using the specified camera, project all of the selected points into 2D pixel
coordinates and return their locations.
@param cameraName: Optional name of the Camera node to use for projecting the
points. If omitted, will look for a node called Camera1.
'''
camNode = nuke.toNode(cameraName)
camMatrix = cameraProjectionMatrix(camNode)
for pt in selectedPoints():
tPos = camMatrix * nuke.math.Vector4(pt.x, pt.y, pt.z, 1.0)
yield nuke.math.Vector2(tPos.x / tPos.w, tPos.y / tPos.w)
#
# Managing the list of snapping functions.
#
# The list of snapping functions. Treat this as a read-only variable; if you
# want to add a new snapping function call addSnapFunc (below)
snapFuncs = []
[docs]def addSnapFunc(label, func):
'''
addSnapFunc(label, func) -> None
Add a new snapping function to the list.
The label parameter is the text that will appear in (eg.) an Enumeration_Knob
for the function. It cannot be the same as any existing snap function label
(if it is, the function will abort without changing anything).
The func parameter is the snapping function. It must be a callable object
taking a single parameter: the node to perform the snapping on.
'''
if label in dict(snapFuncs):
return
snapFuncs.append( (label, func) )
[docs]def callSnapFunc(nodeToSnap=None):
'''
callSnapFunc(nodeToSnap) -> None
Call the snapping function on a node.
The nodeToSnap parameter is optional. If it's not specified, or is None, we
use the result of nuke.thisNode() instead.
The node must have an Enumeration_Knob called "snapFunc" which selects the
snapping function to call.
'''
if nodeToSnap is None:
nodeToSnap = nuke.thisNode()
# Make sure that the nodeToSnap has a snapFunc knob
if "snapFunc" not in nodeToSnap.knobs():
# TODO: warn the user that we can't snap this node.
return
snapFunc = dict(snapFuncs)[nodeToSnap['snapFunc'].value()]
snapFunc(nodeToSnap)
[docs]def radians(vector) -> list:
return [math.radians(x) for x in vector]
[docs]def degrees(vector) -> list:
return [math.degrees(x) for x in vector]
[docs]def scalingMatrix(scalings) -> _nukemath.Matrix4:
'''
Generates a scaling matrix from the input vector.
@type scalings: _nukemath.Vector3
@param scalings: Vector that will be used generate the scaling matrix.
@return: The scaling matrix.
'''
m = _nukemath.Matrix4()
m.makeIdentity()
m.scaling(scalings[0], scalings[1], scalings[2])
return m
[docs]def translateMatrix(translations) -> _nukemath.Matrix4:
'''
Generates a translation matrix from the input vector.
@type translations: _nukemath.Vector3
@param translations: Vector that will be used generate the translation
matrix.
@return: The translate matrix.
'''
m = _nukemath.Matrix4()
m.makeIdentity()
m.translation(translations[0], translations[1], translations[2])
return m
[docs]def rotateMatrixXYZ(rotations) -> _nukemath.Matrix4:
'''
Generates a rotation XYZ matrix from the input vector.
@type rotations: _nukemath.Vector3
@param rotations: Vector that will be used generate the rotate matrix.
@return: The rotate matrix.
'''
m = _nukemath.Matrix4()
m.makeIdentity()
m.rotateZ(rotations[2])
m.rotateY(rotations[1])
m.rotateX(rotations[0])
return m
[docs]def rotateMatrixZXY(rotations) -> _nukemath.Matrix4:
'''
Generates a rotation ZXY matrix from the input vector.
@type rotations: _nukemath.Vector3
@param rotations: Vector that will be used generate the rotate matrix.
@return: The rotate matrix.
'''
m = _nukemath.Matrix4()
m.makeIdentity()
m.rotateY(rotations[1])
m.rotateX(rotations[0])
m.rotateZ(rotations[2])
return m
[docs]def translateRotatePivot(nodeToSnap, translate, rotate) -> tuple:
'''
Pivot translation and rotation must keep the object stationary and in
order to do that compensation values must be placed in the geometry translate
and rotate.
@type nodeToSnap: nuke.Node
@param nodeToSnap: Node to translate and rotate
@type translate: _nukemath.Vector3
@param translate: Target position for the pivot point.
@type rotate: _nukemath.Vector3
@param rotate: Target rotation for the pivot point.
@return: A tuple with the new geometry translation and rotation
respectively (_nukemath.Vector3, _nukemath.Vector3).
'''
pT = translateMatrix(translate)
pTi = pT.inverse()
pR = rotateMatrixXYZ(rotate)
pRi = pR.inverse()
S = scalingMatrix(nodeToSnap['scaling'].getValue())
Si = S.inverse()
M = transformMatrix(nodeToSnap)
compensatedM = pRi * pTi * M * pT * pR * Si
geoTranslate = compensatedM.translation()
geoRotate = degrees(compensatedM.rotationsZXY())
return (geoTranslate, geoRotate)